1887

Abstract

A polyphasic approach was used to characterize a novel bacterium, designated strain TPP412, isolated from a paddy soil in Taiwan. Strain TPP412 was Gram-stain-negative, facultatively anaerobic, rod-shaped, motile with a single polar flagellum and lacked bacteriochlorophyll. Growth was observed at 24–45 °C (optimal 25 °C), at pH 5.0–10.0 (optimal pH 7.0) and with 0–0.75 % (w/v) NaCl. Strain TPP412 showed highest 16S rRNA gene sequence similarity to members of the genera (94.1–94.5 %), (93.9–94.5 %) and (93.4–94.4 %) and established a discrete taxonomic lineage in phylogenetic analysis. The major fatty acids found in strain TPP412 were C, C 3-OH, iso-C 3-OH, C, C 7/C 6 and C 7/C 6. The major polar lipids consisted of phosphatidylmonomethylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and an unidentified lipid. The polyamine pattern showed a predominance of putrescine and a minor amount of spermidine. The DNA G+C content was 58.4 mol% and the predominant quinone system was ubiquinone-8 (Q-8). The low 16S rRNA gene sequence similarity values (≤94.5%) and distinct phylogenetic clustering clearly distinguished strain TPP412 from other representatives of the family Based on the discrete phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence analysis, strain TPP412 is considered to represent a novel species of a new genus in the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is TPP412 (=BCRC 80905=JCM 30814).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001565
2017-02-01
2020-11-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/2/183.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001565&mimeType=html&fmt=ahah

References

  1. Garrity GM, Bell JA, Lilburn T. Family I. Rhodocyclaceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer; 2005; p.887
    [Google Scholar]
  2. Pfennig N. Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 1978;28:283–288 [CrossRef]
    [Google Scholar]
  3. Willems A, Gillis M, De Ley J. Transfer of Rhodocyclus gelatinosus to Rubrivivax gelatinosus gen. nov., comb. nov., and phylogenetic relationships with Leptothrix, Sphaerotilus natans, Pseudomonas saccharophila, and Alcaligenes latus. Int J Syst Bacteriol 1991;41:65–73 [CrossRef]
    [Google Scholar]
  4. Pfennig N. Rhodospirillum tenue sp. nov., a new species of the purple nonsulfur bacteria. J Bacteriol 1969;99:619–620[PubMed]
    [Google Scholar]
  5. Imhoff JF, Truper HG, Pfennig N. Rearrangement of the species and genera of the phototrophic “Purple Nonsulfur Bacteria”. Int J Syst Bacteriol 1984;34:340–343 [CrossRef]
    [Google Scholar]
  6. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  7. Reinhold-Hurek B, Hurek T, Gillis M, Hoste B, Vancanneyt M et al. Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. Int J Syst Bacteriol 1993;43:574–584 [CrossRef]
    [Google Scholar]
  8. Reinhold-Hurek B, Hurek T. Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov. Int J Syst Evol Microbiol 2000;50:649–659 [CrossRef][PubMed]
    [Google Scholar]
  9. Quan ZX, Im WT, Lee ST. Azonexus caeni sp. nov., a denitrifying bacterium isolated from sludge of a wastewater treatment plant. Int J Syst Evol 56 2006;56:1043–1046 [CrossRef]
    [Google Scholar]
  10. Chou JH, Jiang SR, Cho JC, Song J, Lin MC et al. Azonexus hydrophilus sp. nov., a nifH gene-harbouring bacterium isolated from freshwater. Int J Syst Evol Microbiol 2008;58:946–951 [CrossRef][PubMed]
    [Google Scholar]
  11. Bae HS, Rash BA, Rainey FA, Nobre MF, Tiago I et al. Description of Azospira restricta sp. nov., a nitrogen-fixing bacterium isolated from groundwater. Int J Syst Evol Microbiol 2007;57:1521–1526 [CrossRef][PubMed]
    [Google Scholar]
  12. Achenbach LA, Michaelidou U, Bruce RA, Fryman J, Coates JD. Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per) chlorate-reducing bacteria and their phylogenetic position. Int J Syst Evol Microbiol 2001;51:527–533 [CrossRef][PubMed]
    [Google Scholar]
  13. Horn MA, Ihssen J, Matthies C, Schramm A, Acker G et al. Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. Int J Syst Evol Microbiol 2005;55:1255–1265 [CrossRef][PubMed]
    [Google Scholar]
  14. Wolterink A, Kim S, Muusse M, Kim IS, Roholl PJ et al. Dechloromonas hortensis sp. nov. and strain ASK-1, two novel (per) chlorate-reducing bacteria, and taxonomic description of strain GR-1. Int J Syst Evol Microbiol 2005;55:2063–2068 [CrossRef][PubMed]
    [Google Scholar]
  15. Fahrbach M, Kuever J, Meinke R, Kämpfer P, Hollender J. Denitratisoma oestradiolicum gen. nov., sp. nov., a 17beta-oestradiol-degrading, denitrifying betaproteobacterium. Int J Syst Evol Microbiol 2006;56:1547–1552 [CrossRef][PubMed]
    [Google Scholar]
  16. Cummings DE, Caccavo F Jr, Spring S, Rosenzweig RF. Ferribacterium limneticum, gen. nov., sp. nov., an Fe(III)-reducing micro-organism isolated from mining-impacted freshwater lake sediments. Arch Microbiol 1999;171:183–188 [CrossRef]
    [Google Scholar]
  17. Weelink SA, Van Doesburg W, Saia FT, Rijpstra WI, Röling WF et al. A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. FEMS Microbiol Ecol 2009;70:575–585 [CrossRef][PubMed]
    [Google Scholar]
  18. Kalyuzhnaya MG, De Marco P, Bowerman S, Pacheco CC, Lara JC et al. Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol 2006;56:2517–2522 [CrossRef][PubMed]
    [Google Scholar]
  19. Chun J, Kang JY, Jung YC, Jahng KY. Niveibacterium umoris gen. nov., sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2016;66:997–1002 [CrossRef]
    [Google Scholar]
  20. Tanaka K, Nakamura K, Eiichi Mikami E. Fermentation of maleate by a gram-negative strictly anaerobic non-spore-former, Propionivibrio dicarboxylicus gen. nov., sp. nov. Arch Microbiol 1990;154:323–328 [CrossRef]
    [Google Scholar]
  21. Meijer WG, Nienhuis-Kuiper ME, Hansen TA. Fermentative bacteria from estuarine mud: phylogenetic position of Acidaminobacter hydrogenoformans and description of a new type of gram-negative, propionigenic bacterium as Propionibacter pelophilus gen. nov., sp. nov. Int J Syst Bacteriol 1999;49:1039–1044 [CrossRef][PubMed]
    [Google Scholar]
  22. Brune A, Ludwig W, Schink B. Propionivibrio limicola sp. nov., a fermentative bacterium specialized in the degradation of hydroaromatic compounds, reclassification of Propionibacter pelophilus as Propionivibrio pelophilus comb. nov. and amended description of the genus Propionivibrio. Int J Syst Evol Microbiol 2002;52:441–444 [CrossRef][PubMed]
    [Google Scholar]
  23. Maszenan AM, Seviour RJ, Patel BKC, Schumann P. Quadricoccus australiensis gen. nov., sp. nov., a β-proteobacterium from activated sludge biomass. Int J Syst Evol Microbiol 2002;51:527–533
    [Google Scholar]
  24. Tindall BJ, Euzéby JP. Proposal of Parvimonas gen. nov. and Quatrionicoccus gen. nov. as replacements for the illegitimate, prokaryotic, generic names Micromonas Murdoch and Shah 2000 and Quadricoccus Maszenan et al. 2002, respectively. Int J Syst Evol Microbiol 2006;56:2711–2713 [CrossRef][PubMed]
    [Google Scholar]
  25. Tarlera S, Denner EB. Sterolibacterium denitrificans gen. nov., sp. nov., a novel cholesterol-oxidizing, denitrifying member of the beta-Proteobacteria. Int J Syst Evol Microbiol 2003;53:1085–1091 [CrossRef][PubMed]
    [Google Scholar]
  26. Kojima H, Fukui M. Sulfurisoma sediminicola gen. nov., sp. nov., a facultative autotroph isolated from a freshwater lake. Int J Syst Evol Microbiol 2014;64:1587–1592 [CrossRef][PubMed]
    [Google Scholar]
  27. Kojima H, Fukui M. Sulfuritalea hydrogenivorans gen. nov., sp. nov., a facultative autotroph isolated from a freshwater lake. Int J Syst Evol Microbiol 2011;61:1651–1655 [CrossRef][PubMed]
    [Google Scholar]
  28. Macy JM, Rech S, Auling G, Dorsch M, Stackebrandt E et al. Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int J Syst Bacteriol 1993;43:135–142 [CrossRef][PubMed]
    [Google Scholar]
  29. Weon HY, Kim BY, Yoo SH, Kwon SW, Go SJ et al. Uliginosibacterium gangwonense gen. nov., sp. nov., isolated from a wetland, Yongneup, in Korea. Int J Syst Evol Microbiol 2008;58:131–135 [CrossRef][PubMed]
    [Google Scholar]
  30. Crabtree K, Mccoy E. Zoogloea ramigera Itzigsohn, identification and description. Int J Syst Bacteriol 1967;17:1–10 [CrossRef]
    [Google Scholar]
  31. Skerman VBD, Sneath PHA, McGowan V. Approved lists of bacterial names. Int J Syst Evol Microbiol 1980;30:225–420 [CrossRef]
    [Google Scholar]
  32. Shin YK, Hiraishi A, Sugiyama J. Molecular systematics of the genus Zoogloea and emendation of the genus. Int J Syst Bacteriol 1993;43:826–831 [CrossRef][PubMed]
    [Google Scholar]
  33. Xie CH, Yokota A. Zoogloea oryzae sp. nov., a nitrogen-fixing bacterium isolated from rice paddy soil, and reclassification of the strain ATCC 19623 as Crabtreella saccharophila gen. nov., sp. nov. Int J Syst Evol Microbiol 2006;56:619–624 [CrossRef][PubMed]
    [Google Scholar]
  34. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989;17:7843–7853 [CrossRef][PubMed]
    [Google Scholar]
  35. Heiner CR, Hunkapiller KL, Chen SM, Glass JI, Chen EY. Sequencing multimegabase-template DNA with BigDye terminator chemistry. Genome Res 1998;8:557–561[PubMed]
    [Google Scholar]
  36. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol in press
    [Google Scholar]
  37. Poly F, Monrozier LJ, Bally R. Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 2001;152:95–103 [CrossRef][PubMed]
    [Google Scholar]
  38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  39. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  40. Saitou N, Nei M. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
    [Google Scholar]
  41. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  42. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  43. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
    [Google Scholar]
  44. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010;60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  45. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  46. Murray RGE, Doetsch RN, Robinow CF. Determination and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.32–34
    [Google Scholar]
  47. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  48. Lin SY, Liu YC, Hameed A, Hsu YH, Lai WA et al. Azospirillum fermentarium sp. nov., a nitrogen-fixing species isolated from a fermenter. Int J Syst Evol Microbiol 2013;63:3762–3768 [CrossRef][PubMed]
    [Google Scholar]
  49. Hameed A, Shahina M, Lin S-Y, Lai W-A, Hsu Y-H et al. Aquibacter zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from surface seawater, and emended descriptions of the genera Aestuariibaculum and Gaetbulibacter. Int J Syst Evol Microbiol 2014;64:138–145 [CrossRef][PubMed]
    [Google Scholar]
  50. Hardy RWF, Burns RC, Holsten RD. Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 1973;5:47–81 [CrossRef]
    [Google Scholar]
  51. Lin SY, Liu YC, Hameed A, Hsu YH, Huang HI et al. Azospirillum agricola sp. nov., a nitrogen-fixing species isolated from cultivated soil. Int J Syst Evol Microbiol 2016;66:1453–1458 [CrossRef][PubMed]
    [Google Scholar]
  52. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  53. Collins MD. Isoprenoid quinone analysis in classification and identification. In Minnikin DE, Goodfellow M. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; . pp.267–287
    [Google Scholar]
  54. Paisley R. MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual Newark, DE: MIDI; 1996
    [Google Scholar]
  55. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  56. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584–586[PubMed]
    [Google Scholar]
  57. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  58. Scherer P, Kneifel H. Distribution of polyamines in methanogenic bacteria. J Bacteriol 1983;154:1315–1322[PubMed]
    [Google Scholar]
  59. Hameed A, Shahina M, Lin S-Y, Nakayan P, Liu Y-C et al. Youngimonas vesicularis gen. nov., sp. nov., of the family Rhodobacteraceae, isolated from surface seawater, reclassification of Donghicola xiamenensis Tan et al. 2009 as Pseudodonghicola xiamenensis gen. nov., comb. nov. and emended description of the genus Donghicola Yoon et al. 2007. Int J Syst Evol Microbiol 2014;64:2729–2737 [CrossRef][PubMed]
    [Google Scholar]
  60. Lafay B, Ruimy R, De Traubenberg CR, Breittmayer V, Gauthier MJ et al. Roseobacter algicola sp. nov., a new marine bacterium isolated from the phycosphere of the toxin-producing dinoflagellate Prorocentrum lima. Int J Syst Bacteriol 1995;45:290–296 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001565
Loading
/content/journal/ijsem/10.1099/ijsem.0.001565
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error