1887

Abstract

A Gram-stain-negative, non-motile, aerobic and coccoid, ovoid or rod-shaped bacterium, designated GHTF-24, was isolated from a tidal flat on the South Sea, South Korea, and subjected to polyphasic taxonomic study. The novel strain grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 2.0–3.0 % (w/v) NaCl. In the neighbour-joining phylogenetic tree based on 16S rRNA gene sequences, strain GHTF-24 fell within the clade comprising the type strains of species of the genus . Strain GHTF-24 exhibited 16S rRNA gene sequence similarity values of 97.0 % to each of HJ50 and 81-2 and of 91.6–96.5 % to the type strains of the other species of the genus . Strain GHTF-24 contained Q-10 as the predominant ubiquinone and C 7 as the major fatty acid. The major polar lipids of strain GHTF-24 were phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminolipid and one unidentified lipid. The DNA G+C content of strain GHTF-24 was 62.3 mol%, and its mean DNA–DNA relatedness values with the type strains of and were 13–16 %. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain GHTF-24 is separated from other recognized species of the genus . On the basis of the data presented, strain GHTF-24 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is GHTF-24 (=KCTC 52454=NBRC 112420).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001562
2017-01-01
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/1/25.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001562&mimeType=html&fmt=ahah

References

  1. Garrity GM, Bell JA, Lilburn T. Family I. Rhodobacteraceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer; 2005161
    [Google Scholar]
  2. Garrity GM, Bell JA, Lilburn T. Family I. Rhodobacteraceae ord. nov. In List of new names and new combinations previously effectively, but not validly, published, Validation List no. 107. Int J Syst Evol Microbiol 2006; 56:1–6 [CrossRef]
    [Google Scholar]
  3. Labrenz M, Collins MD, Lawson PA, Tindall BJ, Schumann P et al. Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 1999; 49:137–147 [View Article][PubMed]
    [Google Scholar]
  4. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [View Article][PubMed]
    [Google Scholar]
  5. Kim YO, Park S, Nam BH, Park JM, Kim DG et al. Roseovarius scapharcae sp. nov., isolated from ark shell Scapharca broughtonii. Int J Syst Evol Microbiol 2015; 65:4695–4700 [View Article][PubMed]
    [Google Scholar]
  6. González JM, Covert JS, Whitman WB, Henriksen JR, Mayer F et al. Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments. Int J Syst Evol Microbiol 2003; 53:1261–1269 [View Article][PubMed]
    [Google Scholar]
  7. Biebl H, Allgaier M, Lünsdorf H, Pukall R, Tindall BJ et al. Roseovarius mucosus sp. nov., a member of the Roseobacter clade with trace amounts of bacteriochlorophyll a. Int J Syst Evol Microbiol 2005; 55:2377–2383 [View Article][PubMed]
    [Google Scholar]
  8. Boettcher KJ, Geaghan KK, Maloy AP, Barber BJ. Roseovarius crassostreae sp. nov., a member of the Roseobacter clade and the apparent cause of juvenile oyster disease (JOD) in cultured Eastern oysters. Int J Syst Evol Microbiol 2005; 55:1531–1537 [View Article][PubMed]
    [Google Scholar]
  9. Yoon JH, Kang SJ, Oh TK. Roseovarius aestuarii sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2008; 58:1198–1202 [View Article][PubMed]
    [Google Scholar]
  10. Wang B, Tan T, Shao Z. Roseovarius pacificus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2009; 59:1116–1121 [View Article][PubMed]
    [Google Scholar]
  11. Kim YO, Kong HJ, Park S, Kang SJ, Kim WJ et al. Roseovarius halocynthiae sp. nov., isolated from the sea squirt Halocynthia roretzi. Int J Syst Evol Microbiol 2012; 62:931–936 [View Article][PubMed]
    [Google Scholar]
  12. Li Z, Zhao R, Ji S, Shi X, Zhang XH. Roseovarius marisflavi sp. nov., isolated from an amphioxus breeding zone in the coastal region of the Yellow Sea, China. Antonie Van Leeuwenhoek 2013; 104:413–421 [View Article][PubMed]
    [Google Scholar]
  13. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:2969–2974 [View Article][PubMed]
    [Google Scholar]
  14. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67 [CrossRef]
    [Google Scholar]
  15. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993[PubMed] [CrossRef]
    [Google Scholar]
  16. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [View Article][PubMed]
    [Google Scholar]
  17. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG. (editors) The Prokaryotes Berlin: Springer; 1981 pp 1302–1331
    [Google Scholar]
  18. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968; 95:1921–1942[PubMed]
    [Google Scholar]
  19. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 1957; 49:25–68 [View Article][PubMed]
    [Google Scholar]
  20. Park S, Park JM, Kang CH, Yoon JH. Aliiroseovarius pelagivivens gen. nov., sp. nov., isolated from seawater, and reclassification of three species of the genus Roseovarius as Aliiroseovarius crassostreae comb. nov., Aliiroseovarius halocynthiae comb. nov. and Aliiroseovarius sediminilitoris comb. nov. Int J Syst Evol Microbiol 2015; 65:2646–2652 [View Article][PubMed]
    [Google Scholar]
  21. Yoon J-H, Kim H, Kim S-B, Kim H-J, Kim WY et al. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 1996; 46:502–505 [View Article]
    [Google Scholar]
  22. Yoon JH, Lee ST, Park YH. Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 1998; 48:187–194 [View Article][PubMed]
    [Google Scholar]
  23. Yoon JH, Kang KH, Park YH. Psychrobacter jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2003; 53:449–454 [View Article][PubMed]
    [Google Scholar]
  24. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  25. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  26. Jung YT, Park S, Yoon JH. Roseovarius litoreus sp. nov., isolated from seawater of southern coast of Korean peninsula. Antonie Van Leeuwenhoek 2012; 102:141–148 [View Article][PubMed]
    [Google Scholar]
  27. Lai Q, Zhong H, Wang J, Yuan J, Sun F et al. Roseovarius indicus sp. nov., isolated from deep-sea water of the Indian Ocean. Int J Syst Evol Microbiol 2011; 61:2040–2044 [View Article][PubMed]
    [Google Scholar]
  28. Park S, Park JM, Kang CH, Yoon JH. Roseovarius gaetbuli sp. nov., a novel alphaproteobacterium isolated from a tidal flat sediment. Antonie Van Leeuwenhoek 2014; 105:723–730 [View Article][PubMed]
    [Google Scholar]
  29. Rajasabapathy R, Mohandass C, Dastager SG, Liu Q, Khieu TN et al. Roseovarius azorensis sp. nov., isolated from seawater at Espalamaca, Azores. Antonie Van Leeuwenhoek 2014; 105:571–578 [View Article][PubMed]
    [Google Scholar]
  30. Deng S, Jiang F, Chang X, Qu Z, Ren L et al. Roseovarius antarcticus sp. nov., isolated from a decayed whale bone. Int J Syst Evol Microbiol 2015; 65:2326–2333 [View Article][PubMed]
    [Google Scholar]
  31. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207 [CrossRef]
    [Google Scholar]
  32. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  33. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  34. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994 pp 121–161
    [Google Scholar]
  35. Stackebrandt E, Goebel BM. Taxonomic note: A place for DNA–DNA reassociation and 16s rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  36. Oh YS, Lim HJ, Cha IT, Im WT, Yoo JS et al. Roseovarius halotolerans sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2009; 59:2718–2723 [View Article][PubMed]
    [Google Scholar]
  37. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic Acid-Deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.001562
Loading
/content/journal/ijsem/10.1099/ijsem.0.001562
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error