1887

Abstract

Two bacterial strains SZDIS-1-1 and GZDIS-1-1 were isolated from fermentation bed of a pigpen in Fujian Province, China. Cells were Gram-stain-positive, facultatively anaerobic, short rods without flagellum. Their nearest phylogenetic neighbours were Microbacterium amylolyticum N5 (16S rRNA gene sequence similarity 98.2 %), Microbacterium indicum BBH6 (97.9 %) and Microbacterium gubbeenense DPC 5286 (97.8 %) with the DNA–DNA hybridization values to strain SZDIS-1-1 as 20.0±1.2, 14.3±5.8 and 19.1±1.6 %, respectively. The DNA G+C content of the new isolates was 67.6–71.1 mol% and anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0 were their predominant cellular fatty acids. These results were consistent with classification into the genus Microbacterium . However, cell-wall sugars and characteristic amino acid were rhamnose, glucose, galactose and ornithine. Major menaquinones were MK-11 and MK-10. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, glycolipids, unknown phospholipid and unknown lipids. These characteristics constructed a distinct profile of the two isolates. Therefore, based on polyphasic taxonomic characteristics, strains SZDIS-1-1 and GZDIS-1-1 represented a novel species of genus Microbacterium , for which the name Microbacterium sorbitolivorans sp. nov. is proposed, with strain SZDIS-1-1 (=CGMCC 1.15228=DSM 103422) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001556
2016-12-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5556.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001556&mimeType=html&fmt=ahah

References

  1. Alves A., Correia A., Igual J. M., Trujillo M. E..( 2014;). Microbacterium endophyticum sp. nov. and Microbacterium halimionae sp. nov., endophytes isolated from the salt-marsh plant Halimione portulacoides and emended description of the genus Microbacterium. . Syst Appl Microbiol 37: 474–479. [CrossRef] [PubMed]
    [Google Scholar]
  2. Anand S., Bala K., Saxena A., Schumann P., Lal R..( 2012;). Microbacterium amylolyticum sp. nov., isolated from soil from an industrial waste site. . Int J Syst Evol Microbiol 62: 2114–2120. [CrossRef] [PubMed]
    [Google Scholar]
  3. Brennan N. M., Brown R., Goodfellow M., Ward A. C., Beresford T. P., Vancanneyt M., Cogan T. M., Fox P. F..( 2001;). Microbacterium gubbeenense sp. nov., from the surface of a smear-ripened cheese. . Int J Syst Evol Microbiol 51: 1969–1976. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cai M., Wang L., Cai H., Li Y., Wang Y. N., Tang Y. Q., Wu X. L..( 2011;). Salinarimonas ramus sp. nov. and Tessaracoccus oleiagri sp. nov., isolated from a crude oil-contaminated saline soil. . Int J Syst Evol Microbiol 61: 1767–1775. [CrossRef] [PubMed]
    [Google Scholar]
  5. Collins M. D., Goodfellow M., Minnikin D. E..( 1980;). Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. . J Gen Microbiol 118: 29–37. [CrossRef] [PubMed]
    [Google Scholar]
  6. Collins M. D., Jones D., Kroppenstedt R. M..( 1983;). Reclassification of Brevibacterium imperiale (Steinhaus) and ‘Corynebacterium laevaniformans’ (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev.; comb. nov. . Syst Appl Microbiol 4: 65–78. [CrossRef] [PubMed]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A..( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12: 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  8. Dong X. Z., Cai M. Y..( 2001;). Determination of biochemical properties. . In Manual for the Systematic Identification of General Bacteria, pp. 370–398. Beijing:: Science Press; (in Chinese).
    [Google Scholar]
  9. Felsenstein J..( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  10. Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  11. Fitch W. M..( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20: 406–416. [CrossRef]
    [Google Scholar]
  12. Guo Y. P., Rong X. Y., Gu Q., Huang Y..( 2011;). The technology of actinobacterial identification. . In Rapid Identification and Systematics of Actinobacteria, pp. 83–88. Edited by Ruan J. S., Huang Y.. Beijing:: CSPM Press; (in Chinese).
    [Google Scholar]
  13. Kates M..( 1986;). Techniques of Lipidology, , 2nd edn.. Amsterdam:: Elsevier;.
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kimura M..( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  16. Komagata K., Suzuki K..( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19: 161–207.[CrossRef]
    [Google Scholar]
  17. Lechevalier M. P., Lechevalier H. A..( 1980;). The chemotaxonomy of actinomycetes. . In Actinomycete Taxonomy, pp. 227–291. Edited by Dietz A., Thayer D. W.. Arlington, VA:: Society for Industrial Microbiology;.
    [Google Scholar]
  18. Lee J. S., Lee K. C., Park Y. H..( 2006;). Microbacterium koreense sp. nov., from sea water in the South Sea of Korea. . Int J Syst Evol Microbiol 56: 423–427. [CrossRef] [PubMed]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B..( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-Performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167. [CrossRef]
    [Google Scholar]
  20. Orla-Jensen S..( 1919;). The Lactic Acid Bacteria. Copenhagen:: Høst & Sons;.
    [Google Scholar]
  21. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  22. Shivaji S., Bhadra B., Rao R. S., Chaturvedi P., Pindi P. K., Raghukumar C..( 2007;). Microbacterium indicum sp. nov., isolated from a deep-sea sediment sample from the Chagos Trench, Indian Ocean. . Int J Syst Evol Microbiol 57: 1819–1822. [CrossRef] [PubMed]
    [Google Scholar]
  23. Staneck J. L., Roberts G. D..( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28: 226–231.[PubMed]
    [Google Scholar]
  24. Suzuki K., Hamada M. et al.( 2012;). Genus I. Microbacterium Orla-Jensen 1919, 179AL emend. Takeuchi and Hatano 1998b, 744vp. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 5 The Actinobacteria, Part A, pp. 814–852. Edited by Goodfellow M.. New York:: Springer Press;.[CrossRef]
    [Google Scholar]
  25. Takeuchi M., Hatano K..( 1998;). Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. . Int J Syst Bacteriol 48: 739–747. [CrossRef] [PubMed]
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  27. Tang S.-K., Li W.-J., Dong W., Zhang Y.-G., Xu L.-H., Jiang C.-L..( 2003;). Studies of the biological characteristics of some halophilic and halotolerant actinomycetes isolated from saline and alkaline soils. . Actinomycetologica 17: 6–10. [CrossRef]
    [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J..( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22: 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  29. Wang H., Xiang T., Wang Y., Song J., Zhai Y., Chen X., Li Y., Zhao B., Zhao B., Ruan Z..( 2014;). Microbacterium petrolearium sp. nov., isolated from an oil-contaminated water sample. . Int J Syst Evol Microbiol 64: 4168–4172. [CrossRef] [PubMed]
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I, Moore L. H., Moore W. E. C., Murray R. G. E. et al.( 1987;). International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37: 463–464.[CrossRef]
    [Google Scholar]
  31. Yokota A., Takeuchi M., Sakane T., Weiss N..( 1993;). Proposal of six new species in the genus Aureobacterium and transfer of Flavobacterium esteraromaticum Omelianski to the genus Aureobacterium as Aureobacterium esteraromaticum comb. nov. . Int J Syst Bacteriol 43: 555–564. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001556
Loading
/content/journal/ijsem/10.1099/ijsem.0.001556
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error