1887

Abstract

In 1994, analyses of clostridial 16S rRNA gene sequences led to the assignment of 18 species to Clostridium cluster XI, separating them from Clostridium sensu stricto ( Clostridium cluster I). Subsequently, most cluster XI species have been assigned to the family Peptostreptococcaceae with some species being reassigned to new genera. However, several misclassified Clostridium species remained, creating a taxonomic conundrum and confusion regarding their status. Here, we have re-examined the phylogeny of cluster XI species by comparing the 16S rRNA gene-based trees with protein- and genome-based trees, where available. The resulting phylogeny of the Peptostreptococcaceae was consistent with the recent proposals on creating seven new genera within this family. This analysis also revealed a tight clustering of Clostridium litorale and Eubacterium acidaminophilum . Based on these data, we propose reassigning these two organisms to the new genus Peptoclostridium as Peptoclostridium litorale gen. nov. comb. nov. (the type species of the genus) and Peptoclostridium acidaminophilum comb. nov., respectively. As correctly noted in the original publications, the genera Acetoanaerobium and Proteocatella also fall within cluster XI, and can be assigned to the Peptostreptococcaceae . Clostridium sticklandii , which falls within radiation of genus Acetoanaerobium , is proposed to be reclassified as Acetoanaerobium sticklandii comb. nov. The remaining misnamed members of the Peptostreptococcaceae , [ Clostridium ] hiranonis, [ Clostridium ] paradoxum and [ Clostridium ] thermoalcaliphilum, still remain to be properly classified.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001548
2016-12-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5506.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001548&mimeType=html&fmt=ahah

References

  1. Baena S., Fardeau M. L., Woo T. H., Ollivier B., Labat M., Patel B. K..( 1999;). Phylogenetic relationships of three amino-acid-utilizing anaerobes, Selenomonas acidaminovorans, ‘Selenomonas acidaminophila’ and Eubacterium acidaminophilum, as inferred from partial 16S rDNA nucleotide sequences and proposal of Thermanaerovibrio acidaminovorans gen. nov., comb. nov. and Anaeromusa acidaminophila gen. nov., comb. nov. . Int J Syst Bacteriol 49: 969–974. [CrossRef]
    [Google Scholar]
  2. Bes M., Merrouch M., Joseph M., Quéméneur M., Payri C., Pelletier B., Ollivier B., Fardeau M. L., Erauso G., Postec A..( 2015;). Acetoanaerobium pronyense sp. nov., an anaerobic alkaliphilic bacterium isolated from a carbonate chimney of the Prony Hydrothermal Field (New Caledonia). . Int J Syst Evol Microbiol 65: 2574–2580. [CrossRef] [PubMed]
    [Google Scholar]
  3. Brisbarre N., Fardeau M. L., Cueff V., Cayol J. L., Barbier G., Cilia V., Ravot G., Thomas P., Garcia J. L., Ollivier B..( 2003;). Clostridium caminithermale sp. nov., a slightly halophilic and moderately thermophilic bacterium isolated from an Atlantic deep-sea hydrothermal chimney. . Int J Syst Evol Microbiol 53: 1043–1049. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chen S., Song L., Dong X..( 2006;). Sporacetigenium mesophilum gen. nov., sp. nov., isolated from an anaerobic digester treating municipal solid waste and sewage. . Int J Syst Evol Microbiol 56: 721–725. [CrossRef] [PubMed]
    [Google Scholar]
  5. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A..( 1994;). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. . Int J Syst Bacteriol 44: 812–826. [CrossRef] [PubMed]
    [Google Scholar]
  6. Deloger M., El Karoui M., Petit M. A..( 2009;). A genomic distance based on MUM indicates discontinuity between most bacterial species and genera. . J Bacteriol 191: 91–99. [CrossRef] [PubMed]
    [Google Scholar]
  7. Dietrichs D., Meyer M., Rieth M., Andreesen J. R..( 1991;). Interaction of selenoprotein PA and the thioredoxin system, components of the NADPH-dependent reduction of glycine in Eubacterium acidaminophilum and Clostridium litorale. . J Bacteriol 173: 5983–5991. [CrossRef]
    [Google Scholar]
  8. Edgar R. C..( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32: 1792–1797. [CrossRef] [PubMed]
    [Google Scholar]
  9. Federhen S..( 2012;). The NCBI Taxonomy database. . Nucleic Acids Res 40: D136–D143. [CrossRef] [PubMed]
    [Google Scholar]
  10. Federhen S..( 2015;). Type material in the NCBI Taxonomy Database. . Nucleic Acids Res 43: D1086–D1098. [CrossRef] [PubMed]
    [Google Scholar]
  11. Fendrich C., Hippe H., Gottschalk G..( 1990;). Clostridium halophilium sp. nov. and C. litorale sp. nov., an obligate halophilic and a marine species degrading betaine in the Stickland reaction. . Arch Microbiol 154: 127–132. [CrossRef]
    [Google Scholar]
  12. Fonknechten N., Chaussonnerie S., Tricot S., Lajus A., Andreesen J. R., Perchat N., Pelletier E., Gouyvenoux M., Barbe V. et al.( 2010;). Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence. . BMC Genomics 11: 555. [CrossRef]
    [Google Scholar]
  13. Galperin M. Y., Mekhedov S. L., Puigbo P., Smirnov S., Wolf Y. I., Rigden D. J..( 2012;). Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. . Environ Microbiol 14: 2870–2890. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gao Z. M., Xu X., Ruan L. W..( 2014;). Enrichment and characterization of an anaerobic cellulolytic microbial consortium SQD-1.1 from mangrove soil. . Appl Microbiol Biotechnol 98: 465–474. [CrossRef] [PubMed]
    [Google Scholar]
  15. Gerritsen J., Fuentes S., Grievink W., van Niftrik L., Tindall B. J., Timmerman H. M., Rijkers G. T., Smidt H..( 2014;). Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastro-intestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter gen. nov. and Asaccharospora gen. nov. . Int J Syst Evol Microbiol 64: 1600–1616. [CrossRef] [PubMed]
    [Google Scholar]
  16. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M..( 2007;). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57: 81–91. [CrossRef] [PubMed]
    [Google Scholar]
  17. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O..( 2010;). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. . Syst Biol 59: 307–321. [CrossRef] [PubMed]
    [Google Scholar]
  18. Ho C. H., Liu S. M..( 2011;). Effect of coplanar PCB concentration on dechlorinating microbial communities and dechlorination in estuarine sediments. . Chemosphere 82: 48–55. [CrossRef]
    [Google Scholar]
  19. Lawson P. A., Rainey F. A..( 2016;). Proposal to restrict the genus Clostridium (Prazmowski) to Clostridium butyricum and related species. . Int J Syst Evol Microbiol 66: 1009–1016. [CrossRef]
    [Google Scholar]
  20. Lawson P. A., Citron D. M., Tyrrell K. L., Finegold S. M..( 2016;). Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. . Anaerobe 40: 95–99. [CrossRef]
    [Google Scholar]
  21. Lo C. I., Mishra A. K., Padhmanabhan R., Samb B., Sow A. G., Robert C., Couderc C., Faye N., Raoult D. et al.( 2013;). Non-contiguous finished genome sequence and description of Clostridium dakarense sp. nov. . Stand Genomic Sci 9: 14–27. [CrossRef]
    [Google Scholar]
  22. Ludwig W., Schleifer K.-H., Whitman W. B..( 2009a;). Taxonomic outline of the phylum Firmicutes. . In Bergey's Manual of Systematic Bacteriology, , 2nd edn.,Vol 3: The Firmicutes pp. 15–17. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B.. New York:: Springer;.
    [Google Scholar]
  23. Ludwig W., Schleifer K.-H., Whitman W. B..( 2009b;). Revised road map to the phylum Firmicutes. . In Bergey's Manual of Systematic Bacteriology, , 2nd edn.,Vol 3: The Firmicutes pp. 1–16. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B.. New York:: Springer;.
    [Google Scholar]
  24. Meyer J., Schmidt A., Michalke K., Hensel R..( 2007;). Volatilisation of metals and metalloids by the microbial population of an alluvial soil. . Syst Appl Microbiol 30: 229–238. [CrossRef]
    [Google Scholar]
  25. Nobu M. K., Narihiro T., Rinke C., Kamagata Y., Tringe S. G., Woyke T., Liu W. T..( 2015;). Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. . ISME J 9: 1710–1722. [CrossRef]
    [Google Scholar]
  26. Parker C. T., Garrity G. M., Tindall B. J..( 2015;). International code of nomenclature of prokaryotes. . Int J Syst Evol Microbiol 20:. [CrossRef]
    [Google Scholar]
  27. Parte A. C..( 2014;). LPSN–list of prokaryotic names with standing in nomenclature. . Nucleic Acids Res 42: D613–D616. [CrossRef] [PubMed]
    [Google Scholar]
  28. Pikuta E. V., Itoh T., Krader P., Tang J., Whitman W. B., Hoover R. B..( 2006;). Anaerovirgula multivorans gen. nov., sp. nov., a novel spore-forming, alkaliphilic anaerobe isolated from Owens Lake, California, USA. . Int J Syst Evol Microbiol 56: 2623–2629. [CrossRef] [PubMed]
    [Google Scholar]
  29. Pikuta E. V., Hoover R. B., Marsic D., Whitman W. B., Lupa B., Tang J., Krader P..( 2009;). Proteocatella sphenisci gen. nov., sp. nov., a psychrotolerant, spore-forming anaerobe isolated from penguin guano. . Int J Syst Evol Microbiol 59: 2302–2307. [CrossRef] [PubMed]
    [Google Scholar]
  30. Poehlein A., Alghaithi H. S., Chandran L., Chibani C. M., Davydova E., Dhamotharan K., Ge W., Gutierrez-Gutierrez D. A., Jagirdar A. et al.( 2014a;). First insights into the genome of the amino acid-metabolizing bacterium Clostridium litorale DSM 5388. . Genome Announc 2: e00754-14. [CrossRef] [PubMed]
    [Google Scholar]
  31. Poehlein A., Andreesen J. R., Daniel R..( 2014b;). Complete genome sequence of amino acid-utilizing Eubacterium acidaminophilum al-2 (DSM 3953). . Genome Announc 2: e00573-14. [CrossRef] [PubMed]
    [Google Scholar]
  32. Poehlein A., Cebulla M., Ilg M. M., Bengelsdorf F. R., Schiel-Bengelsdorf B., Whited G., Andreesen J. R., Gottschalk G., Daniel R., Dürre P..( 2015;). The complete genome sequence of Clostridium aceticum: a missing link between Rnf- and cytochrome-containing autotrophic acetogens. . MBio 6: e01168-15. [CrossRef] [PubMed]
    [Google Scholar]
  33. Rainey F. A., Hollen B. J., Small A..( 2009;). Genus I. Clostridium. . In Bergey's Manual of Systematic Bacteriology, , 2nd edn.,Vol. 3: The Firmicutes pp. 738–828. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B.. New York:: Springer;.
    [Google Scholar]
  34. Rainey F. A., Hollen B. J., Small A. M..( 2015;). Clostridium. . In Bergey's Manual of Systematics of Archaea and Bacteria, pp. 1–122. Edited by DeVos P., Chun J., Dedysh S., Hedlund B., Kämpfer P., Rainey F. A., Trujillo M., Whitman W. B.. John Wiley & Sons, Inc;.[CrossRef]
    [Google Scholar]
  35. Sasi Jyothsna T. S., Tushar L., Sasikala C., Ramana C. V..( 2016;). Paraclostridium benzoelyticum gen. nov., sp. nov., isolated from marine sediment and reclassification of Clostridium bifermentans as Paraclostridium bifermentans comb. nov. Proposal of a new genus Paeniclostridium gen. nov. to accommodate Clostridium sordellii and Clostridium ghonii. . Int J Syst Evol Microbiol 66: 1268–1274. [CrossRef]
    [Google Scholar]
  36. Scaria J., Suzuki H., Ptak C. P., Chen J. W., Zhu Y., Guo X. K., Chang Y. F..( 2015;). Comparative genomic and phenomic analysis of Clostridium difficile and Clostridium sordellii, two related pathogens with differing host tissue preference. . BMC Genomics 16: 448. [CrossRef] [PubMed]
    [Google Scholar]
  37. Sizova M. V., Chilaka A., Earl A. M., Doerfert S. N., Muller P. A., Torralba M., McCorrison J. M., Durkin A. S., Nelson K. E., Epstein S. S..( 2015;). High-quality draft genome sequences of five anaerobic oral bacteria and description of Peptoanaerobacter stomatis gen. nov., sp. nov., a new member of the family Peptostreptococcaceae. . Stand Genomic Sci 10: 37. [CrossRef] [PubMed]
    [Google Scholar]
  38. Stadtman T. C., Barker H. A..( 1951;). Studies on the methane fermentation. X. A new formate-decomposing bacterium, Methanococcus vannielii. . J Bacteriol 62: 269–280.
    [Google Scholar]
  39. Stadtman T. C., McClung L. S..( 1957;). Clostridium sticklandii nov. spec. . J Bacteriol 73: 218–219.
    [Google Scholar]
  40. Tamura K., Nei M..( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10: 512–526.
    [Google Scholar]
  41. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  42. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P..( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60: 249–266. [CrossRef] [PubMed]
    [Google Scholar]
  43. Varghese N. J., Mukherjee S., Ivanova N., Konstantinidis K. T., Mavrommatis K., Kyrpides N. C., Pati A..( 2015;). Microbial species delineation using whole genome sequences. . Nucleic Acids Res 43: 6761–6771. [CrossRef]
    [Google Scholar]
  44. Wade W. G..( 2009;). The Firmicutes. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,Vol. 3 pp. 865–891. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B.. New York:: Springer;.
    [Google Scholar]
  45. Yang F., Tiedje J., Zhou J., Marsh T. L..( 2012;). Firmicutes and their roles in uranium immobilization. . In US Department of Energy Subsurface Biogeochemical Research Annual Meeting University-Led Research, pp. 64. Washington, DC:: U. S. Department of Energy Office of Science;.
    [Google Scholar]
  46. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R..( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31: 241–250. [CrossRef] [PubMed]
    [Google Scholar]
  47. Yarza P., Yilmaz P., Pruesse E., Glöckner F. O., Ludwig W., Schleifer K. H., Whitman W. B., Euzéby J., Amann R., Rosselló-Móra R..( 2014;). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. . Nat Rev Microbiol 12: 635–645. [CrossRef] [PubMed]
    [Google Scholar]
  48. Yilmaz P., Parfrey L. W., Yarza P., Gerken J., Pruesse E., Quast C., Schweer T., Peplies J., Ludwig W., Glöckner F. O..( 2014;). The SILVA and ‘All-species Living Tree Project (LTP)’ taxonomic frameworks. . Nucleic Acids Res 42: D643–D648. [CrossRef] [PubMed]
    [Google Scholar]
  49. Yoshida N., Takahashi N., Hiraishi A..( 2005;). Phylogenetic characterization of a polychlorinated-dioxin- dechlorinating microbial community by use of microcosm studies. . Appl Environ Microbiol 71: 4325–4334. [CrossRef] [PubMed]
    [Google Scholar]
  50. Yutin N., Puigbò P., Koonin E. V., Wolf Y. I..( 2012;). Phylogenomics of prokaryotic ribosomal proteins. . PLoS One 7: e36972. [CrossRef] [PubMed]
    [Google Scholar]
  51. Yutin N., Galperin M. Y..( 2013;). A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. . Environ Microbiol 15: 2631–2641.
    [Google Scholar]
  52. Zhou X., Zhang C., Zhang D., Awata T., Xiao Z., Yang Q., Katayama A..( 2015;). Polyphasic characterization of an anaerobic hexachlorobenzene-dechlorinating microbial consortium with a wide dechlorination spectrum for chlorobenzenes. . J Biosci Bioeng 120: 62–68. [CrossRef]
    [Google Scholar]
  53. Zindel U., Freudenberg W., Rieth M., Andreesen J. R., Schnell J., Widdel F..( 1988;). Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate. Description and enzymatic studies. . Arch Microbiol 150: 254–266. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001548
Loading
/content/journal/ijsem/10.1099/ijsem.0.001548
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error