1887

Abstract

An aerobic, Gram-stain-negative, gliding and yellow-pigmented bacterium, designated strain JS5, was isolated from freshwater of Juam reservoir, Republic of Korea. Cells were catalase-positive and oxidase-negative. The neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain JS5 forms an independent lineage within the genus . Strain JS5 was related distantly to ‘’ GP20-2 (98.2 % 16S rRNA gene sequence similarity), Dae 20 (96.8 %) and CH15-11 (96.7 %). The major fatty acids of strain JS5 were C, summed feature 3 comprising C 7 and/or C 6 and summed feature 8 comprising C 7 and/or C 6. The predominant isoprenoid quinone of the isolate was ubiquinone-10. The DNA G+C content of strain JS5 was 65 mol%. Phenotypic characteristics distinguished strain JS5 from related species of the genus . On the basis of the evidence presented in this study, a novel species, sp. nov., is proposed to accommodate strain JS5 (=KCTC 23642=JCM 18309).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001546
2016-12-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5493.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001546&mimeType=html&fmt=ahah

References

  1. Ahn J. H., Kim B. C., Kim S. J., Lee G. H., Song J. K., Kwon S. W., Weon H. Y.. 2015; Sphingomonas parvus sp. nov. isolated from a ginseng-cultivated soil. J Microbiol53:673–677 [CrossRef][PubMed]
    [Google Scholar]
  2. An H., Xu M., Dai J., Wang Y., Cai F., Qi H., Peng F., Fang C.. 2011; Sphingomonas xinjiangensis sp. nov., isolated from desert sand. Int J Syst Evol Microbiol61:1865–1869 [CrossRef][PubMed]
    [Google Scholar]
  3. An D. S., Liu Q. M., Lee H. G., Jung M. S., Kim S. C., Lee S. T., Im W. T.. 2013; Sphingomonas ginsengisoli sp. nov. and Sphingomonas sediminicola sp. nov. Int J Syst Evol Microbiol63:496–501 [CrossRef][PubMed]
    [Google Scholar]
  4. Asker D., Beppu T., Ueda K.. 2007a; Sphingomonas astaxanthinifaciens sp. nov., a novel astaxanthin-producing bacterium of the family Sphingomonadaceae isolated from Misasa, Tottori, Japan. FEMS Microbiol Lett273:140–148 [CrossRef][PubMed]
    [Google Scholar]
  5. Asker D., Beppu T., Ueda K.. 2007b; Sphingomonas jaspsi sp. nov., a novel carotenoid-producing bacterium isolated from Misasa, Tottori, Japan. Int J Syst Evol Microbiol57:1435–1441 [CrossRef][PubMed]
    [Google Scholar]
  6. Barrow G. I., Feltham R. K. A.. (editors) 1993; Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press;[CrossRef]
    [Google Scholar]
  7. Bauer A. W., Kirby W. M. M., Sherris J. C., Turck M.. 1966; Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol45:493–496[PubMed]
    [Google Scholar]
  8. Bernardet J. F., Nakagawa Y., Holmes B.. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  9. Busse H. J., Denner E. B. M., Buczolits S., Salkinoja-Salonen M., Bennasar A., Kämpfer P.. 2003; Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol53:1253–1260 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen H., Jogler M., Rohde M., Klenk H. P., Busse H. J., Tindall B. J., Spröer C., Overmann J.. 2012; Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol62:2835–2843 [CrossRef][PubMed]
    [Google Scholar]
  11. Chun J., Goodfellow M.. 1995; A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol45:240–245 [CrossRef][PubMed]
    [Google Scholar]
  12. Chung E. J., Jo E. J., Yoon H. S., Song G. C., Jeon C. O., Chung Y. R.. 2011; Sphingomonas oryziterrae sp. nov. and Sphingomonas jinjuensis sp. nov. isolated from rhizosphere soil of rice (Oryza sativa L.). Int J Syst Evol Microbiol61:2389–2394 [CrossRef][PubMed]
    [Google Scholar]
  13. CLSI 2009; Performance standards for antimicrobial susceptibility testing. 19th Informational Supplement. CLSI Document M100-S19 (ISBN 1–56238–690–5) Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  14. Collins M. D.. 1994; Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics pp.265–309 Edited by Goodfellow M., O’Donnell A. G.. Chichester: Johb Wiley & Sons Ltd;
    [Google Scholar]
  15. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  16. Felsenstein J.. 1993; phylip (phylogeny inference package). version 3.5c, Seattle, USA
  17. Feng G. D., Yang S. Z., Xiong X., Li H. P., Zhu H. H.. 2016; Sphingomonas metalli sp. nov., isolated from an abandoned lead–zinc mine. Int J Syst Evol Microbiol66:2046–2051 [CrossRef][PubMed]
    [Google Scholar]
  18. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  19. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser41:95–98
    [Google Scholar]
  20. Huang H. Y., Li J., Zhao G. Z., Zhu W. Y., Yang L. L., Tang H. Y., Xu L. H., Li W. J.. 2012; Sphingomonas endophytica sp. nov., isolated from Artemisia annua L. Int J Syst Evol Microbiol62:1576–1580 [CrossRef]
    [Google Scholar]
  21. Huy H., Jin L., Lee K. C., Kim S. G., Lee J. S., Ahn C. Y., Oh H. M.. 2014; Sphingomonas daechungensis sp. nov., isolated from sediment of a eutrophic reservoir. Int J Syst Evol Microbiol64:1412–1418 [CrossRef][PubMed]
    [Google Scholar]
  22. Jukes T. H., Cantor C. R.. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp.21–132 Edited by Munro H. N.. New York: Academic Press;[CrossRef]
    [Google Scholar]
  23. Kim M. K., Schubert K., Im W. T., Kim K. H., Lee S. T., Overmann J.. 2007; Sphingomonas kaistensis sp. nov., a novel alphaproteobacterium containing pufLM genes. Int J Syst Evol Microbiol57:1527–1534 [CrossRef][PubMed]
    [Google Scholar]
  24. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  25. Kim S. J., Moon J. Y., Lim J. M., Ahn J. H., Weon H. Y., Ahn T. Y., Kwon S. W.. 2014; Sphingomonas aerophila sp. nov. and Sphingomonas naasensis sp. nov., isolated from air and soil, respectively. Int J Syst Evol Microbiol64:926–932[CrossRef]
    [Google Scholar]
  26. Klassen J. L., Foght J. M.. 2008; Differences in carotenoid composition among hymenobacter and related strains support a tree-like model of carotenoid evolution. Appl Environ Microbiol74:2016–2022 [CrossRef]
    [Google Scholar]
  27. Komagata K., Suzuki K.. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol19:161–207[CrossRef]
    [Google Scholar]
  28. Lee J. S., Shin Y. K., Yoon J. H., Takeuchi M., Pyun Y. R., Park Y. H.. 2001; Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol51:1491–1498 [CrossRef][PubMed]
    [Google Scholar]
  29. Lee J. S., Lee K. C., Pyun Y. R., Bae K. S.. 2003; Arthrobacter koreensis sp. nov., a novel alkalitolerant bacterium from soil. Int J Syst Evol Microbiol53:1277–1280 [CrossRef][PubMed]
    [Google Scholar]
  30. Liu Q., Liu H. C., Zhang J. L., Zhou Y. G., Xin Y. H.. 2015; Sphingomonas psychrolutea sp. nov., a psychrotolerant bacterium isolated from glacier ice. Int J Syst Evol Microbiol65:2955–2959 [CrossRef][PubMed]
    [Google Scholar]
  31. Marmur J., Doty P.. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol5:109–118 [CrossRef]
    [Google Scholar]
  32. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  33. Powers E. M.. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol61:3756–3758[PubMed]
    [Google Scholar]
  34. Romanenko L. A., Uchino M., Frolova G. M., Tanaka N., Kalinovskaya N. I., Latyshev N., Mikhailov V. V. 2007; Sphingomonas molluscorum sp. nov., a novel marine isolate with antimicrobial activity. Int J Syst Evol Microbiol57:358–363 [CrossRef][PubMed]
    [Google Scholar]
  35. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  36. Schenkel E., Berlaimont V., Dubois J., Helson-Cambier M., Hanocq M.. 1995; Improved high-performance liquid chromatographic method for the determination of polyamines as their benzoylated derivatives: application to P388 cancer cells. J Chromatogr B Biomed Appl668:189–197 [CrossRef][PubMed]
    [Google Scholar]
  37. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp.607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  38. Srinivasan S., Lee J. J., Kim M. K.. 2011; Sphingomonas rosea sp. nov. and Sphingomonas swuensis sp. nov., rosy colored β-glucosidase-producing bacteria isolated from soil. J Microbiol49:610–616 [CrossRef][PubMed]
    [Google Scholar]
  39. Takeuchi M., Kawai F., Shimada Y., Yokota A.. 1993; Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Microbiol16:227–238 [CrossRef]
    [Google Scholar]
  40. Takeuchi M., Sakane T., Yanagi M., Yamasato K., Hamana K., Yokota A.. 1995; Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int J Syst Bacteriol45:334–341 [CrossRef][PubMed]
    [Google Scholar]
  41. Takeuchi M., Hamana K., Hiraishi A.. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol51:1405–1417 [CrossRef][PubMed]
    [Google Scholar]
  42. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  43. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  44. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology pp.330–393 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology Press;
    [Google Scholar]
  45. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464[CrossRef]
    [Google Scholar]
  46. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H.. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol34:99–119 [CrossRef][PubMed]
    [Google Scholar]
  47. Yabuuchi E., Kosako Y., Naka T., Suzuki S., Yano I.. 1999; Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas. Microbiol Immunol43:339–349 [CrossRef][PubMed]
    [Google Scholar]
  48. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K.. 2002; Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol52:1485–1496 [CrossRef][PubMed]
    [Google Scholar]
  49. Yamaguchi S., Yokoe M.. 2000; A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol66:3337–3343 [CrossRef][PubMed]
    [Google Scholar]
  50. Yang D. C., Im W. T., Kim M. K., Ohta H., Lee S. T.. 2006; Sphingomonas soli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in the α-4 subgroup of the proteobacteria. Int J Syst Evol Microbiol56:703–707 [CrossRef][PubMed]
    [Google Scholar]
  51. Yi T. H., Han C. K., Srinivasan S., Lee K. J., Kim M. K.. 2010; Sphingomonas humi sp. nov., isolated from soil. J Microbiol48:165–169 [CrossRef]
    [Google Scholar]
  52. Zhu L., Si M., Li C., Xin K., Chen C., Shi X., Huang R., Zhao L., Shen X., Zhang L.. 2015; Sphingomonas gei sp. nov., isolated from roots of Geum aleppicum. Int J Syst Evol Microbiol65:1160–1166 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001546
Loading
/content/journal/ijsem/10.1099/ijsem.0.001546
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error