1887

Abstract

Strain JC231 was isolated from a coastal saline habitat of Gujarat and was identified based on 16S rRNA gene sequence analysis as a member belonging to the genus Spirochaeta and showed highest sequence similarity (<91 %) with Spirochaeta bajacaliforniensis DSM 16054 and other members of the family Spirochaetaceae . Intensive attempts to culture strain JC231 in pure culture have failed and were associated with only one species of a Desulfovibrio . However, presence of fosmidomycin inhibited the growth of Desulfovibrio sp. and strain JC231 was characterized in its presence. Strain JC231 was an obligate anaerobe, helical shaped and Gram-stain-negative with catalase and oxidase negative. Draft genome sequence analysis of strain JC231 indicated the full complement of genes for both 2-C-methyl-d-erythritol 4-phosphate and 3-hydroxy-3-methylglutaryl-CoA pathways of terpenogenesis. C14 : 0, iso-C15 : 0, C16 : 0, iso-C15 : 1H/C13 : 0 3OH and iso-C14 : 0 are the major (>5 %) fatty acids. Strain JC231 contains diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and six unidentified lipids (L1–L6). G+C content of strain JC231 was 55.7 mol%. Distinct morphological, physiological and genotypic differences from the previously described taxa support the classification of strain JC231 as a representative of a new genus and species in the family Spirochaetaceae , for which the name ‘Candidatus Marispirochaeta associata’ is proposed. Strain JC231 is deposited as a defined co-culture with Desulfovibrio sp. JC271 to DSMZ (DSM 29857) and KCTC (KCTC 15472). Based on phenotypic, genotypic and phylogenetic analyses, we also propose the reclassification of Spirochaeta bajacaliforniensis as Sediminispirochaeta bajacaliforniensis gen. nov., comb. nov., Spirochaeta smaragdinae as Sediminispirochaeta smaragdinae comb. nov. and Spirochaeta sinaica as Sediminispirochaeta sinaica comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001545
2016-12-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5485.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001545&mimeType=html&fmt=ahah

References

  1. Abt B., Göker M., Scheuner C., Han C., Lu M., Misra M., Lapidus A., Nolan M., Lucas S. et al.( 2013;). Genome sequence of the thermophilic fresh-water bacterium Spirochaeta caldaria type strain (H1T), reclassification of Spirochaeta caldaria and Spirochaeta stenostrepta in the genus Treponema as Treponema caldaria comb. nov., Treponema stenostrepta comb. nov., and Treponema zuelzerae comb. nov., and emendation of the genus Treponema. . Stand Genomic Sci 8: 88–105.[CrossRef]
    [Google Scholar]
  2. Aksenova H. Y., Rainey F. A., Janssen P. H., Zavarzin G. A., Morgan H. W..( 1992;). Spirochaeta thermophila sp. nov., an obligately anaerobic, polysaccharolytic, extremely thermophilic bacterium. . Int J Syst Bacteriol 42: 175–177. [CrossRef]
    [Google Scholar]
  3. Reddy S. V., Aspana S., Tushar D. L., Sasikala Ch., Ramana Ch. V..( 2013;). Spirochaeta sphaeroplastigenens sp. nov., a halo-alkaliphilic, obligately anaerobic spirochaete isolated from soda lake Lonar. . Int J Syst Evol Microbiol 63: 2223–2228. [CrossRef] [PubMed]
    [Google Scholar]
  4. Auch A. F., Von Jan M., Klenk H.-P., Göker M..( 2010;). Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. . Stand Genomic Sci 2: 117–134. [CrossRef] [PubMed]
    [Google Scholar]
  5. Begley M., Gahan C. G., Kollas A. K., Hintz M., Hill C., Jomaa H., Eberl M..( 2004;). The interplay between classical and alternative isoprenoid biosynthesis controls γδ T cell bioactivity of Listeria monocytogenes. . FEBS Lett 561: 99–104. [CrossRef]
    [Google Scholar]
  6. Breznak J. A., Canale-Parola E..( 1975;). Morphology and physiology of Spirochaeta aurantia strains isolated from aquatic habitats. . Arch Microbiol 105: 1–12. [CrossRef]
    [Google Scholar]
  7. Breznak J. A., Warnecke F..( 2008;). Spirochaeta cellobiosiphila sp. nov., a facultatively anaerobic, marine spirochaete. . Int J Syst Evol Microbiol 58: 2762–2768. [CrossRef]
    [Google Scholar]
  8. Campbell B. J., Cary S. C..( 2001;). Characterization of a novel spirochete associated with the hydrothermal vent polychaete annelid, Alvinella pompejana. . Appl Environ Microbiol 67: 110–117. [CrossRef] [PubMed]
    [Google Scholar]
  9. Canale-Parola E..( 1984;). Genus I. Spirochaeta. Ehrenberg 1835, 313AL. . In Bergey’s Manual of Systematic Bacteriology,vol. 1 pp. 39–46. Edited by Krieg N. R., Holt J. G.. Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  10. Canale-Parola E..( 1992;). Free-living saccharolytic spirochetes: the genus Spirochaeta. . In The Prokaryotes, , 2nd edn., pp. 3524–3536. Edited by Balows A., Truper H. G., Dworkin M., Harder W., Schleifer K.-H.. New York:: Springer-Verlag;.[CrossRef]
    [Google Scholar]
  11. Cappuccino J. G., Sherman N..( 1998;). Microbiology – a Laboratory Manual, , Fifth edition.. California:: Benjamin/Cummings Science Publishing;.
    [Google Scholar]
  12. Dröge S., Fröhlich J., Radek R., König H..( 2006;). Spirochaeta coccoides sp. nov., a novel coccoid spirochete from the hindgut of the termite Neotermes castaneus. . Appl Environ Microbiol 72: 392–397. [CrossRef] [PubMed]
    [Google Scholar]
  13. Dubinina G., Grabovich M., Leshcheva N., Rainey F. A., Gavrish E..( 2011;). Spirochaeta perfilievii sp. nov., an oxygen-tolerant, sulfide-oxidizing, sulfur- and thiosulfate-reducing spirochaete isolated from a saline spring. . Int J Syst Evol Microbiol 61: 110–117. [CrossRef]
    [Google Scholar]
  14. Dubinina G., Gavrish E., Leshcheva N., Akimov V., Gronow S., Grabovich M..( 2015;). Spirochaeta sinaica sp. nov., a halophilic spirochaete isolated from a cyanobacterial mat. . Int J Syst Evol Microbiol 65: 3872–3877. [CrossRef]
    [Google Scholar]
  15. Fracek S. P., Stolz J. F..( 1985;). Spirochaeta bajacaliforniensis sp. nov. from a microbial mat community at Laguna Figueroa, Baja California Norte, Mexico. . Arch Microbiol 142: 317–325. [CrossRef] [PubMed]
    [Google Scholar]
  16. Francis X., Cunningham Jr..( 2002;). Regulation of carotenoid synthesis and accumulation in plants. . Pure Appl Chem 74: 1409–1417.
    [Google Scholar]
  17. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M..( 2007;). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57: 81–91. [CrossRef]
    [Google Scholar]
  18. Greenberg E. P., Canale-Parola E..( 1976;). Spirochaeta halophila sp. n., a facultative anaerobe from a high-salinity pond. . Arch Microbiol 110: 185–194. [CrossRef]
    [Google Scholar]
  19. Hania W. B., Joseph M., Schumann P., Bunk B., Fiebig A., Spröer C., Klenk H. P., Fardeau M. L., Spring S..( 2015;). Complete genome sequence and description of Salinispira pacifica gen. nov., sp. nov., a novel spirochaete isolated form a hypersaline microbial mat. . Stand Genomic Sci 10: 7. [CrossRef] [PubMed]
    [Google Scholar]
  20. Harwood C. S., Canale-Parola E..( 1983;). Spirochaeta isovalerica sp. nov., a marine anaerobe that forms branched-chain fatty acids as fermentation products. . Int J Syst Bacteriol 33: 573–579. [CrossRef]
    [Google Scholar]
  21. Hespell R. B., Canale-Parola E..( 1970;). Spirochaeta litoralis sp. n., a strictly anaerobic marine spirochete. . Arch Microbiol 74: 1–18. [CrossRef]
    [Google Scholar]
  22. Imachi H., Sakai S., Hirayama H., Nakagawa S., Nunoura T., Takai K., Horikoshi K..( 2008;). Exilispira thermophila gen. nov., sp. nov., an anaerobic, thermophilic spirochaete isolated from a deep-sea hydrothermal vent chimney. . Int J Syst Evol Microbiol 58: 2258–2265. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef]
    [Google Scholar]
  24. Kimura M..( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  25. Leschine S. B., Paster B. J..( 2010;). Genus Spirochaeta. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 4 pp. 473–484. Edited by Krieg N. R., Staley J. M., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B.. New York:: Springer;.
    [Google Scholar]
  26. Magot M., Fardeau M.-L., Arnauld O., Lanau C., Ollivier B., Thomas P., Patel B. K. C..( 1997;). Spirochaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. . FEMS Microbiol Lett 155: 185–191. [CrossRef]
    [Google Scholar]
  27. Marmur J..( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3: 208–218. [CrossRef]
    [Google Scholar]
  28. Meier-Koltohoff J. P., Göker M., Spröer C., Klenk H. P..( 2013;). When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 195: 413–418. [CrossRef]
    [Google Scholar]
  29. Mende D. R., Sunagawa S., Zeller G., Bork P..( 2013;). Accurate and universal delineation of prokaryotic species. . Nat Methods 10: 881–884. [CrossRef]
    [Google Scholar]
  30. Mesbah M., Premachandran U., Whitman W. B..( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167. [CrossRef]
    [Google Scholar]
  31. Miyazaki M., Sakai S., Yamanaka Y., Saito Y., Takai K., Imachi H..( 2014;). Spirochaeta psychrophila sp. nov., a psychrophilic spirochaete isolated from subsea floor sediment offshore Shimokita, Japan, and emended description of the genus Spirochaeta. . Int J Syst Evol Microbiol 64: 2798–2804. [CrossRef]
    [Google Scholar]
  32. Parker C. T., Tindall B. J., Garrity G. M..( 2016;). International code of nomenclature of prokaryotes. prokaryotic code (2008 revision). . Int J Syst Evol Microbiol, (in press). doi: [CrossRef]
    [Google Scholar]
  33. Pikuta E. V., Hoover R. B., Bej A. K., Marsic D., Whitman W. B., Krader P..( 2009;). Spirochaeta dissipatitropha sp. nov., an alkaliphilic, obligately anaerobic bacterium, and emended description of the genus Spirochaeta Ehrenberg 1835. . Int J Syst Evol Microbiol 59: 1798–1804. [CrossRef]
    [Google Scholar]
  34. Pohlschroeder M., Leschine S. B., Canale-Parola E..( 1994;). Spirochaeta caldaria sp. nov., a thermophilic bacterium that enhances cellulose degradation by Clostridium thermocellum. . Arch Microbiol 161: 17–24. [CrossRef]
    [Google Scholar]
  35. Ramaprasad E. V., Sasikala Ch., Ramana Ch. V..( 2013;). Neurosporene is the major carotenoid accumulated by Rhodobacter viridis JA737. . Biotechnol Lett 35: 1093–1097. [CrossRef] [PubMed]
    [Google Scholar]
  36. Richter M., Rosselló-Móra R..( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci USA 106: 19126–19131. [CrossRef] [PubMed]
    [Google Scholar]
  37. Ritalahti K. M., Justicia-Leon S. D., Cusick K. D., Ramos-Hernandez N., Rubin M., Dornbush J., Löffler F. E..( 2012;). Sphaerochaeta globosa gen. nov., sp. nov. and Sphaerochaeta pleomorpha sp. nov., free-living, spherical spirochaetes. . Int J Syst Evol Microbiol 62: 210–216. [CrossRef]
    [Google Scholar]
  38. Sasser M..( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, , MIDI Technical Note No. 101.. Newark, DE:: MIDI;.
    [Google Scholar]
  39. Seto H., Watanabe H., Furihata K..( 1996;). Simultaneous operation of the mevalonate and non-mevalonate pathways in the biosynthesis of isopentenyl diphosphate in Streptomyces aeriouvifer. . Tetrahedron Lett 37: 7979–7982. [CrossRef]
    [Google Scholar]
  40. Shivani Y., Subhash Y., Tushar L., Sasikala Ch., Ramana Ch. V..( 2015;). Spirochaeta lutea sp. nov., isolated from marine habitats and emended description of the genus Spirochaeta. . Syst Appl Microbiol 38: 110–114. [CrossRef] [PubMed]
    [Google Scholar]
  41. Sravanthi T., Tushar L., Sasikala Ch., Ramana Ch. V..( 2015;). Spirochaeta odontotermitis sp. nov., an obligately anaerobic, cellulolytic, halotolerant, alkaliphilic spirochaete isolated from the termite Odontotermes obesus (Rambur) gut. . Int J Syst Evol Microbiol 65: 4589–4594. [CrossRef] [PubMed]
    [Google Scholar]
  42. Sravanthi T., Tushar L., Sasikala Ch., Ramana Ch. V..( 2016;). Alkalispirochaeta cellulosivorans gen. nov., sp. nov., a cellulose-hydrolysing, alkaliphilic, halotolerant bacterium isolated from the gut of a wood-eating cockroach (Cryptocercus punctulatus), and reclassification of four species of Spirochaeta as new combinations within Alkalispirochaeta gen. nov. . Int J Syst Evol Microbiol 66: 1612–1619. [CrossRef] [PubMed]
    [Google Scholar]
  43. Stancu C., Sima A..( 2007;). Statins: mechanism of action and effects. . J Cell Mol Med 5: 378–387. [CrossRef]
    [Google Scholar]
  44. Subhash Y., Sasikala Ch., Ramana Ch. V..( 2013a;). Flavobacterium aquaticum sp. nov., isolated from a water sample of a rice field. . Int J Syst Evol Microbiol 63: 3463–3469. [CrossRef]
    [Google Scholar]
  45. Subhash Y., Tushar L., Sasikala Ch., Ramana Ch. V..( 2013b;). Erythrobacter odishensis sp. nov. and Pontibacter odishensis sp. nov. isolated from a dry soil of a solar saltern. . Int J Syst Evol Microbiol 63: 4524–4532. [CrossRef]
    [Google Scholar]
  46. Subhash Y., Tushar L., Sasikala Ch., Ramana Ch. V..( 2013c;). Falsirhodobacter halotolerans gen. nov., sp. nov., isolated from a dry soil of a solar saltern. . Int J Syst Evol Microbiol 63: 2132–2137. [CrossRef]
    [Google Scholar]
  47. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  48. Teal T. H., Chapman M., Guillemette T., Margulis L..( 1996;). Free-living spirochetes from cape cod microbial mats detected by electron microscopy. . Microbiologia 12: 571–584.[PubMed]
    [Google Scholar]
  49. Validation list no. 67( 1998;). Validation of publication of new names and new combinationspreviously effectively published outside the IJSB. . Int J Syst Bacteriol 48: 1083–1084.[CrossRef]
    [Google Scholar]
  50. Validation list no. 97( 2004;). Validation of publication of new names and new combinations previously effectively published outside the IJSEM. . Int J Syst Evol Microbiol 54: 631–632. [CrossRef] [PubMed]
    [Google Scholar]
  51. Troshina O., Oshurkova V., Suzina N., Machulin A., Ariskina E., Vinokurova N., Kopitsyn D., Novikov A., Shcherbakova V..( 2015;). Sphaerochaeta associata sp. nov., a spherical spirochaete isolated from cultures of Methanosarcina mazei JL01. . Int J Syst Evol Microbiol 65: 4315–4322. [CrossRef]
    [Google Scholar]
  52. Umeda T., Tanaka N., Kusakabe Y., Nakanishi M., Kitade Y., Nakamura K. T..( 2011;). Molecular basis of fosmidomycin's action on the human malaria parasite Plasmodium falciparum. . Sci Rep, 1–9.
    [Google Scholar]
  53. Yarza P., Yilmaz P., Pruesse E., Glöckner F. C., Ludwig W., Schleifer K.-H., Whitman W. B., Euzéby J., Amann R., Rosselló-Móra R..( 2014;). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. . Nat Rev Microbiol 12: 635–645. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001545
Loading
/content/journal/ijsem/10.1099/ijsem.0.001545
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error