sp. nov., an actinobacterium isolated from alpine forest soil Free

Abstract

A Gram-stain-positive, non-motile, catalase-positive and cytochrome oxidase-negative bacterium, designated strain S20-107, was isolated from alpine forest soil. Growth occurred at 0–30 °C, at pH 6–9 and in the presence of 0–3 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S20-107 was related to the genus and had the highest 16S rRNA gene sequence similarity with DS-52 (96.1 %). Strain S20-107 showed <96.1% 16S rRNA gene sequence similarities to all other recognized members of the genus . The cell-wall peptidoglycan contained -diaminopimelic acid. The major whole-cell sugars were glucose, galactose, mannose, arabinose, ribose and rhamnose. The strain contained MK-8(H) as the predominant menaquinone and diphosphatidylglycerol, phosphatidylethanolamine and an unidentified aminophospholipid as the major polar lipids. The major cellular fatty acids were anteiso-C, C, summed feature 3 (Cω6 and/or Cω7 and/or iso-C 2-OH) and iso-C. The genomic DNA G+C content was 70.5 mol%. Combined data of phylogenetic, phenotypic and chemotaxonomic analyses demonstrated that strain S20-107 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is S20-107 (=DSM 102309=LMG 29427).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001541
2016-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5460.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001541&mimeType=html&fmt=ahah

References

  1. Alarico S., Rainey F. A., Empadinhas N., Schumann P., Nobre M. F., da Costa M. S. 2002; Rubritepida flocculans gen. nov., sp. nov., a new slightly thermophilic member of the α-1 subclass of the Proteobacteria . Syst Appl Microbiol 25:198–206 [View Article][PubMed]
    [Google Scholar]
  2. Bernardet J.-F., Bowman J. P. 2006; The genus Flavobacterium . Prokaryotes 7:481–531
    [Google Scholar]
  3. da Costa M., Albuquerque L., Nobre M., Wait R. 2011a; The identification of fatty acids in bacteria. Methods Microbiol 38:183–196 [CrossRef]
    [Google Scholar]
  4. da Costa M., Albuquerque L., Nobre M., Wait R. 2011b; The extraction and identification of respiratory lipoquinones of prokaryotes and their use in taxonomy. Methods Microbiol 38:197–206 [CrossRef]
    [Google Scholar]
  5. da Costa M., Albuquerque L., Nobre M., Wait R. 2011c; The identification of polar lipids. Methods Microbiol 38:165–181 [CrossRef]
    [Google Scholar]
  6. França L., Sannino C., Turchetti B., Buzzini P., Margesin R. 2016; Seasonal and altitudinal changes of culturable bacterial and yeast diversity in Alpine forest soils. Extremophiles 20:855–873 [View Article][PubMed]
    [Google Scholar]
  7. Kim K. K., Lee K. C., Lee J. S. 2012a; Nakamurella panacisegetis sp. nov. and proposal for reclassification of Humicoccus flavidus Yoon et al., 2007 and Saxeibacter lacteus Lee et al., 2008 as Nakamurella flavida comb. nov. and Nakamurella lactea comb. nov. Syst Appl Microbiol 35:291–296 [View Article][PubMed]
    [Google Scholar]
  8. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  9. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  10. Lechevalier M. P., Lechevalier H. A. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443 [View Article]
    [Google Scholar]
  11. Lee S. D., Park S. K., Yun Y.-W., Lee D. W. 2008; Saxeibacter lacteus gen. nov., sp. nov., an actinobacterium isolated from rock. Int J Syst Evol Microbiol 58:906–909 [View Article]
    [Google Scholar]
  12. Margesin R., Gander S., Zacke G., Gounot A. M., Schinner F. 2003; Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7:451–458 [View Article][PubMed]
    [Google Scholar]
  13. Margesin R., Schinner F., Marx J. C., Gerday C. (editors) 2008 Psychrophiles: From Biodiversity To Biotechnology Berlin: Springer Verlag; [CrossRef]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  15. Nielsen P., Fritze D., Priest F. G. 1995; Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761 [View Article]
    [Google Scholar]
  16. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [View Article][PubMed]
    [Google Scholar]
  17. Reasoner D. J., Geldreich E. E. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  19. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231[PubMed]
    [Google Scholar]
  20. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  21. Tao T. S., Yue Y. Y., Chen W. X., Chen W. F. 2004; Proposal of Nakamurella gen. nov. as a substitute for the bacterial genus Microsphaera Yoshimi et al. 1996 and Nakamurellaceae fam. nov. as a substitute for the illegitimate bacterial family Microsphaeraceae Rainey et al. 1997. Int J Syst Evol Microbiol 54:999–1000 [View Article][PubMed]
    [Google Scholar]
  22. Tice H., Mayilraj S., Sims D., Lapidus A., Nolan M., Lucas S., Glavina Del Rio T., Copeland A., Cheng J. F. et al. 2010; Complete genome sequence of Nakamurella multipartita type strain (Y-104T). Stand Genomic Sci 2:168–175 [View Article][PubMed]
    [Google Scholar]
  23. Tuo L., Li F. N., Pan Z., Lou I., Guo M., Chen L., Hu L., Sun C. H., Lee S. M.-Y. 2016; Nakamurella endophytica sp. nov., a novel endophytic actinobacterium isolated from the bark of Kandelia candel . Int J Syst Evol Microbiol 66:1577–1582 [View Article][PubMed]
    [Google Scholar]
  24. Yoon J. H., Kang S. J., Jung S. Y., Oh T. K. 2007; Humicoccus flavidus gen. nov., sp. nov., isolated from soil. Int J Syst Evol Microbiol 57:56–59 [View Article][PubMed]
    [Google Scholar]
  25. Yoshimi Y., Hiraishi A., Nakamura K. 1996; Isolation and characterization of Microsphaera multipartita gen. nov., sp. nov., a polysaccharide-accumulating Gram-positive bacterium from activated sludge. Int J Syst Bacteriol 46:519–525 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001541
Loading
/content/journal/ijsem/10.1099/ijsem.0.001541
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed