1887

Abstract

A Gram-stain-negative, rod-shaped, white bacterium, designated strain T16R-88, was isolated from a rhizosphere soil sample collected in Buyeo-gun of Chungcheongnam-do, South Korea. A phylogenetic tree based on 16S rRNA gene sequences showed that strain T16R-88 formed a lineage within the genus . It showed highest sequence similarities to Gsoil 104 (97.4 %), J22 (97.2 %), NWG-II14 (97.1 %), THG-G12 (97.1 %) and Gsoil 042 (97.0 %). The predominant respiratory quinone was menaquinone MK-7. The major cellular fatty acids (>10 % of the total fatty acids) were summed feature 3 (iso-C 2-OH and/or C 7), iso-C 3-OH and iso-C. The polar lipids consisted of phosphatidylethanolamine, sphingolipid, one unidentified aminophospholipid, three unidentified aminolipids, three unidentified lipids and one unidentified phospholipid. DNA–DNA hybridization values between strain T16R-88 and its most closely related species were below 70 %. The DNA G+C content was 35.6 mol%. On the basis of the evidence presented in this study, strain T16R-88 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is T16R-88 (=KACC 18652=NBRC 111984).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001532
2016-12-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5406.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001532&mimeType=html&fmt=ahah

References

  1. Bernardet J. F., Nakagawa Y., Holmes B.. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  2. Breznak J. A., Costilow R. N.. 1994; Physicochemical factors in growth. In Methods for General and Molecular Bacteriology pp137–154 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Derichs J., Kämpfer P., Lipski A.. 2014; Pedobacter nutrimenti sp. nov., isolated from chilled food. Int J Syst Evol Microbiol64:1310–1316 [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  5. Felske A., Rheims H., Wolterink A., Stackebrandt E., Akkermans A. D.. 1997; Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology143:2983–2989 [CrossRef][PubMed]
    [Google Scholar]
  6. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  7. Gonzalez J. M., Saiz-Jimenez C.. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol4:770–773[PubMed][CrossRef]
    [Google Scholar]
  8. Gordon N. S., Valenzuela A., Adams S. M., Ramsey P. W., Pollock J. L., Holben W. E., Gannon J. E.. 2009; Pedobacter nyackensis sp. nov., Pedobacter alluvionis sp. nov. and Pedobacter borealis sp. nov., isolated from Montana flood-plain sediment and forest soil. Int J Syst Evol Microbiol59:1720–1726 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  10. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  11. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  12. Muurholm A., Cousin S., Päuker O., Evelyne Brambilla E., Stackebrandt E.. 2007; Pedobacter duraquae sp. nov., Pedobacter westerhofensis sp. nov., Pedobacter metabolipauper sp. nov., Pedobacter hartonius sp. nov. and Pedobacter steynii sp. nov., isolated from a hard-water rivulet. Int J Syst Evol Microbiol57:2221–2227[CrossRef]
    [Google Scholar]
  13. Ngo H. T. T., Son H.-M., Park S. Y., Kim K. Y., Yi T. H.. 2014; Pedobacter seoulensis sp. nov., isolated from soil of a bamboo field. Antonie van Leeuwenhoek105:961–970 [CrossRef][PubMed]
    [Google Scholar]
  14. Pruesse E., Peplies J., Glöckner F. O.. 2012; SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  15. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  16. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc;
    [Google Scholar]
  17. Seldin L., Dubnau D.. 1985; Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol35:151–154 [CrossRef]
    [Google Scholar]
  18. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol44:846–849 [CrossRef]
    [Google Scholar]
  19. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J.. 1998; Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol48:165–177 [CrossRef][PubMed]
    [Google Scholar]
  20. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  21. Ten L. N., Liu Q. M., Im W. T., Lee M., Yang D. C., Lee S. T.. 2006; Pedobacter ginsengisoli sp. nov., a DNase-producing bacterium isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol56:2565–2570 [CrossRef][PubMed]
    [Google Scholar]
  22. Yoon M.-H., Ten L. N., Im W.-T., Lee S.-T.. 2007; Pedobacter panaciterrae sp. nov., isolated from soil in South Korea. Int J Syst Evol Microbiol57:381–386 [CrossRef][PubMed]
    [Google Scholar]
  23. Zhou Z., Jiang F., Wang S., Peng F., Dai J., Li W., Fang C.. 2012; Pedobacter arcticus sp. nov., a facultative psychrophile isolated from Arctic soil, and emended descriptions of the genus Pedobacter, Pedobacter heparinus, Pedobacter daechungensis, Pedobacter terricola, Pedobacter glucosidilyticus and Pedobacter lentus. Int J Syst Evol Microbiol62:1963–1969 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001532
Loading
/content/journal/ijsem/10.1099/ijsem.0.001532
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error