1887

Abstract

A novel, taxonomically unique group of six strains of the genus was discovered during an exploratory study on strains culturable from soil and water natural ecosystems in the Bohemian part of the Czech Republic. Based on the comparative analyses of the 16S rRNA gene, and sequences, these strains formed strongly supported and internally coherent clusters (intracluster identities of ≥99.9, ≥96.1 and ≥97.3 %, respectively), which were clearly separated from all known species of the genus (≤98.7, ≤83.2 and ≤88.9 %, respectively). The distinctness of the group at the species level was evidenced also by the results of the genus-wide analyses of the whole-cell mass fingerprints of the six strains generated by matrix-assisted laser desorption/ionization-time-of-flight MS and the whole-genome sequence of a group member, ANC 4603. Compared with the known species of the genus , all six strains exhibited a unique phenotype, characterized by psychrotolerance (growth at 1 °C through 28 °C), the inability to grow at 32 °C and the ability to assimilate -aspartate and malonate but not 2,3-butanediol or citrate. Based on these results, the name sp. nov. is proposed for the taxon represented by the six strains. The type strain is ANC 4603 (=CCM 8700=CCUG 69239=CNCTC 7549).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001526
2016-12-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5392.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001526&mimeType=html&fmt=ahah

References

  1. Baumann P., Doudoroff M., Stanier R. Y.. 1968; A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J Bacteriol95:1520–1541[PubMed]
    [Google Scholar]
  2. Christensen H., Bisgaard M., Frederiksen W., Mutters R., Kuhnert P., Olsen J. E.. 2001; Is characterization of a single isolate sufficient for valid publication of a new genus or species? Proposal to modify recommendation 30b of the Bacteriological Code (1990 Revision). Int J Syst Evol Microbiol51:2221–2225 [CrossRef][PubMed]
    [Google Scholar]
  3. Juni E.. 1972; Interspecies transformation of Acinetobacter: genetic evidence for a ubiquitous genus. J Bacteriol112:917–931[PubMed]
    [Google Scholar]
  4. Krizova L., Maixnerova M., Sedo O., Nemec A.. 2014; Acinetobacter bohemicus sp. nov. widespread in natural soil and water ecosystems in the Czech Republic. Syst Appl Microbiol37:467–473 [CrossRef][PubMed]
    [Google Scholar]
  5. Krizova L., Maixnerova M., Sedo O., Nemec A.. 2015; Acinetobacter albensis sp. nov., isolated from natural soil and water ecosystems. Int J Syst Evol Microbiol65:3905–3912 [CrossRef]
    [Google Scholar]
  6. Meier-Kolthoff J. P., Göker M., Spröer C., Klenk H.-P.. 2013a; When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  7. Meier-Kolthoff J. P., Auch A. F., Klenk H.-P., Göker M.. 2013b; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14:60 [CrossRef]
    [Google Scholar]
  8. Nemec A., Radolfova-Krizova L.. 2016; Acinetobacter pakistanensis Abbas et al. 2014 is a later heterotypic synonym of Acinetobacter bohemicus Krizova et al. 2014. Int J Syst Evol Microbiol66:5614–5617[CrossRef]
    [Google Scholar]
  9. Nemec A., Musílek M., Maixnerová M., De Baere T., van der Reijden T. J., Vaneechoutte M., Dijkshoorn L.. 2009; Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. Int J Syst Evol Microbiol59:118–124 [CrossRef][PubMed]
    [Google Scholar]
  10. Nemec A., Krizova L., Maixnerova M., van der Reijden T. J., Deschaght P., Passet V., Vaneechoutte M., Brisse S., Dijkshoorn L.. 2011; Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Res Microbiol162:393–404 [CrossRef][PubMed]
    [Google Scholar]
  11. Radolfova-Krizova L., Maixnerova M., Nemec A.. 2016; Acinetobacter pragensis sp. nov. found in soil and water ecosystems. Int J Syst Evol Microbiol66:3897–3903 [CrossRef][PubMed]
    [Google Scholar]
  12. Richter M., Rosselló-Móra R.. 2009; Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  13. Rosselló-Móra R., Amann R.. 2015; Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol38:209–216 [CrossRef]
    [Google Scholar]
  14. Touchon M., Cury J., Yoon E. J., Krizova L., Cerqueira G. C., Murphy C., Feldgarden M., Wortman J., Clermont D. et al. 2014; The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences. Genome Biol Evol6:2866–2882 [CrossRef][PubMed]
    [Google Scholar]
  15. Whitman W. B., Woyke T., Klenk H. P., Zhou Y., Lilburn T. G., Beck B. J., De Vos P., Vandamme P., Eisen J. A. et al. 2015; Genomic Encyclopedia of Bacterial and Archaeal Type Strains, Phase III: the genomes of soil and plant-associated and newly described type strains. Stand Genomic Sci10: [CrossRef][PubMed]
    [Google Scholar]
  16. Yamamoto S., Bouvet P. J., Harayama S.. 1999; Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNADNA hybridization. Int J Syst Bacteriol49:87–95 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001526
Loading
/content/journal/ijsem/10.1099/ijsem.0.001526
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error