1887

Abstract

was originally isolated from Japanese horseradish (), but recently some isolates collected from potato plants and tubers displaying blackleg and soft rot symptoms were also assigned to . Here, combining genomic and phenotypical data, we re-evaluated their taxonomic position. PacBio and Illumina technologies were used to complete the genome sequences of CFBP 3304 and RNS 08-42-1A. Multi-locus sequence analysis showed that the strains RNS 08-42-1A, SCC3193, CFIA1002 and WPP163, which were collected from potato plant environment, constituted a separate clade from the original Japanese horseradish . The taxonomic position of these strains was also supported by calculation of the DNA–DNA hybridization, genome average nucleotide indentity, alignment fraction and average nucleotide indentity values. In addition, they were phenotypically distinguished from strains by producing acids from (+)-raffinose, -(+)--lactose, (+)-galactose and (+)-melibiose but not from methyl --glycopyranoside, (+)-maltose or malonic acid. The name sp. nov. is proposed for this taxon; the type strain is RNS 08-42-1A (=CFBP 8475=LMG 29774).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001524
2016-12-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5379.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001524&mimeType=html&fmt=ahah

References

  1. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M. et al. 2008; The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75 [View Article][PubMed]
    [Google Scholar]
  2. Baghaee-Ravari S., Rahimian H., Shams-Bakhsh M., Lopez-Solanilla E., Antúnez-Lamas M., Rodríguez-Palenzuela P. 2011; Characterization of Pectobacterium species from Iran using biochemical and molecular methods. Eur J Plant Pathol 129:413–425 [View Article]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  4. Chun J., Rainey F. A. 2014; Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 64:316–324 [View Article][PubMed]
    [Google Scholar]
  5. De Boer S. H., Li X., Ward L. J. 2012; Pectobacterium spp. associated with bacterial stem rot syndrome of potato in Canada. Phytopathology 102:937–947 [View Article][PubMed]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  7. De Vos P. 2011; Multilocus sequence determination and analysis. In Methods Microbiol pp. 385–407 Amsterdam: Elsevier;
    [Google Scholar]
  8. Elbing K., Brent R. 2002; Media preparation and bacteriological tools. In Current Protocols in Molecular Biology pp. 1.1.1–1.1.7 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. Hoboken, NJ: John Wiley & Sons, Inc;
    [Google Scholar]
  9. Gardan L., Gouy C., Christen R., Samson R. 2003; Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int J Syst Evol Microbiol 53:381–391 [View Article][PubMed]
    [Google Scholar]
  10. Glaeser S. P., Kämpfer P. 2015; Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 38:237–245 [View Article][PubMed]
    [Google Scholar]
  11. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M. 2007; DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91 [View Article][PubMed]
    [Google Scholar]
  12. Goto M., Matsumoto K. 1987; Erwinia carotovora subsp. wasabiae subsp. nov. Isolated from diseased rhizomes and fibrous roots of japanese horseradish (Eutrema wasabi Maxim.). Int J Syst Bacteriol 37:130–135 [View Article]
    [Google Scholar]
  13. Hauben L., Moore E. R., Vauterin L., Steenackers M., Mergaert J., Verdonck L., Swings J. 1998; Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst Appl Microbiol 21:384–397 [View Article][PubMed]
    [Google Scholar]
  14. Huss V. A., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [View Article][PubMed]
    [Google Scholar]
  15. Khayi S., Raoul des Essarts Y., Quêtu-Laurent A., Moumni M., Hélias V., Faure D. 2015; Genomic overview of the phytopathogen Pectobacterium wasabiae strain RNS 08.42.1A suggests horizontal acquisition of quorum-sensing genes. Genetica 143:241–252 [View Article][PubMed]
    [Google Scholar]
  16. Kim H.-S., Ma B., Perna N. T., Charkowski A. O. 2009; Phylogeny and virulence of naturally occurring type III secretion system-deficient Pectobacterium strains. Appl Environ Microbiol 75:4539–4549 [View Article][PubMed]
    [Google Scholar]
  17. Kumar S., Stecher G., Tamura K. 2016; mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evolmsw054
    [Google Scholar]
  18. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. 2007; clustal w and clustal x version 2.0. Bioinforma Oxf Engl 23:2947–2948 [View Article]
    [Google Scholar]
  19. Ma B., Hibbing M. E., Kim H.-S., Reedy R. M., Yedidia I., Breuer J., Breuer J., Glasner J. D., Perna N. T. et al. 2007; Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya . Phytopathology 97:1150–1163 [View Article][PubMed]
    [Google Scholar]
  20. Meier-Kolthoff J. P., Auch A. F., Klenk H.-P., Göker M. 2013; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60 [View Article][PubMed]
    [Google Scholar]
  21. Moleleki L. N., Onkendi E. M., Mongae A., Kubheka G. C. 2013; Characterisation of pectobacterium wasabiae causing blackleg and soft rot diseases in South Africa. Eur J Plant Pathol 135:279–288 [View Article]
    [Google Scholar]
  22. Nabhan S., Wydra K., Linde M., Debener T. 2012; The use of two complementary DNA assays, AFLP and MLSA, for epidemic and phylogenetic studies of pectolytic enterobacterial strains with focus on the heterogeneous species Pectobacterium carotovorum . Plant Pathol 61:498–508 [View Article]
    [Google Scholar]
  23. Nabhan S., De Boer S. H., Maiss E., Wydra K. 2013; Pectobacterium aroidearum sp. nov., a soft rot pathogen with preference for monocotyledonous plants. Int J Syst Evol Microbiol 63:2520–2525 [View Article][PubMed]
    [Google Scholar]
  24. Nykyri J., Niemi O., Koskinen P., Nokso-Koivisto J., Pasanen M., Broberg M., Plyusnin I., Törönen P., Holm L. et al. 2012; Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog 8:e1003013 [View Article][PubMed]
    [Google Scholar]
  25. Pasanen M., Laurila J., Brader G., Palva E. T., Ahola V., van der Wolf J., Hannukkala A., Pirhonen M. 2013; Characterisation of Pectobacterium wasabiae and Pectobacterium carotovorum subsp. carotovorum isolates from diseased potato plants in Finland. Ann Appl Biol 163:403–419 [View Article]
    [Google Scholar]
  26. Perombelon M. C. M. 2002; Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Path 51:1–12 [CrossRef]
    [Google Scholar]
  27. Perombelon M. C. M., Kelman A. 1980; Ecology of the soft rot Erwinias. Annu Rev Phytopathol 18:361–387 [View Article]
    [Google Scholar]
  28. Pitman A. R., Harrow S. A., Visnovsky S. B. 2010; Genetic characterisation of Pectobacterium wasabiae causing soft rot disease of potato in New Zealand. Eur J Plant Pathol 126:423–435 [View Article]
    [Google Scholar]
  29. Pritchard L., Glover R. H., Humphris S., Elphinstone J. G., Toth I. K. 2016; Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 8:12–24 [View Article]
    [Google Scholar]
  30. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  31. Tamura K., Nei M., Kumar S. 2004; Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035 [View Article][PubMed]
    [Google Scholar]
  32. Varghese N. J., Mukherjee S., Ivanova N., Konstantinidis K. T., Mavrommatis K., Kyrpides N. C., Pati A. 2015; Microbial species delineation using whole genome sequences. Nucleic Acids Res 43:6761–6771 [View Article][PubMed]
    [Google Scholar]
  33. Waleron M., Waleron K., Lojkowska E. 2013; Occurrence of Pectobacterium wasabiae in potato field samples. Eur J Plant Pathol 137:149–158 [View Article]
    [Google Scholar]
  34. Zhang Y., Fan Q., Loria R. 2016; A re-evaluation of the taxonomy of phytopathogenic genera Dickeya and Pectobacterium using whole-genome sequencing data. Syst Appl Microbiol 39:252–259 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001524
Loading
/content/journal/ijsem/10.1099/ijsem.0.001524
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error