1887

Abstract

was originally isolated from Japanese horseradish (), but recently some isolates collected from potato plants and tubers displaying blackleg and soft rot symptoms were also assigned to . Here, combining genomic and phenotypical data, we re-evaluated their taxonomic position. PacBio and Illumina technologies were used to complete the genome sequences of CFBP 3304 and RNS 08-42-1A. Multi-locus sequence analysis showed that the strains RNS 08-42-1A, SCC3193, CFIA1002 and WPP163, which were collected from potato plant environment, constituted a separate clade from the original Japanese horseradish . The taxonomic position of these strains was also supported by calculation of the DNA–DNA hybridization, genome average nucleotide indentity, alignment fraction and average nucleotide indentity values. In addition, they were phenotypically distinguished from strains by producing acids from (+)-raffinose, -(+)--lactose, (+)-galactose and (+)-melibiose but not from methyl --glycopyranoside, (+)-maltose or malonic acid. The name sp. nov. is proposed for this taxon; the type strain is RNS 08-42-1A (=CFBP 8475=LMG 29774).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001524
2016-12-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5379.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001524&mimeType=html&fmt=ahah

References

  1. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M. et al. 2008; The RAST server: rapid annotations using subsystems technology. BMC Genomics9:75 [CrossRef][PubMed]
    [Google Scholar]
  2. Baghaee-Ravari S., Rahimian H., Shams-Bakhsh M., Lopez-Solanilla E., Antúnez-Lamas M., Rodríguez-Palenzuela P.. 2011; Characterization of Pectobacterium species from Iran using biochemical and molecular methods. Eur J Plant Pathol129:413–425 [CrossRef]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  4. Chun J., Rainey F. A.. 2014; Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol64:316–324 [CrossRef][PubMed]
    [Google Scholar]
  5. De Boer S. H., Li X., Ward L. J.. 2012; Pectobacterium spp. associated with bacterial stem rot syndrome of potato in Canada. Phytopathology102:937–947 [CrossRef][PubMed]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  7. De Vos P.. 2011; Multilocus sequence determination and analysis. In Methods Microbiol pp.385–407 Amsterdam: Elsevier;
    [Google Scholar]
  8. Elbing K., Brent R.. 2002; Media preparation and bacteriological tools. In Current Protocols in Molecular Biology pp.1.1.1–1.1.7 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. Hoboken, NJ: John Wiley & Sons, Inc;
    [Google Scholar]
  9. Gardan L., Gouy C., Christen R., Samson R.. 2003; Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int J Syst Evol Microbiol53:381–391 [CrossRef][PubMed]
    [Google Scholar]
  10. Glaeser S. P., Kämpfer P.. 2015; Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol38:237–245 [CrossRef][PubMed]
    [Google Scholar]
  11. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. 2007; DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  12. Goto M., Matsumoto K.. 1987; Erwinia carotovora subsp. wasabiae subsp. nov. Isolated from diseased rhizomes and fibrous roots of japanese horseradish (Eutrema wasabi Maxim.). Int J Syst Bacteriol37:130–135 [CrossRef]
    [Google Scholar]
  13. Hauben L., Moore E. R., Vauterin L., Steenackers M., Mergaert J., Verdonck L., Swings J.. 1998; Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst Appl Microbiol21:384–397 [CrossRef][PubMed]
    [Google Scholar]
  14. Huss V. A., Festl H., Schleifer K. H.. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  15. Khayi S., Raoul des Essarts Y., Quêtu-Laurent A., Moumni M., Hélias V., Faure D.. 2015; Genomic overview of the phytopathogen Pectobacterium wasabiae strain RNS 08.42.1A suggests horizontal acquisition of quorum-sensing genes. Genetica143:241–252 [CrossRef][PubMed]
    [Google Scholar]
  16. Kim H.-S., Ma B., Perna N. T., Charkowski A. O.. 2009; Phylogeny and virulence of naturally occurring type III secretion system-deficient Pectobacterium strains. Appl Environ Microbiol75:4539–4549 [CrossRef][PubMed]
    [Google Scholar]
  17. Kumar S., Stecher G., Tamura K.. 2016; mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evolmsw054
    [Google Scholar]
  18. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. 2007; clustal w and clustal x version 2.0. Bioinforma Oxf Engl23:2947–2948 [CrossRef]
    [Google Scholar]
  19. Ma B., Hibbing M. E., Kim H.-S., Reedy R. M., Yedidia I., Breuer J., Breuer J., Glasner J. D., Perna N. T. et al. 2007; Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology97:1150–1163 [CrossRef][PubMed]
    [Google Scholar]
  20. Meier-Kolthoff J. P., Auch A. F., Klenk H.-P., Göker M.. 2013; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14:60 [CrossRef][PubMed]
    [Google Scholar]
  21. Moleleki L. N., Onkendi E. M., Mongae A., Kubheka G. C.. 2013; Characterisation of pectobacterium wasabiae causing blackleg and soft rot diseases in South Africa. Eur J Plant Pathol135:279–288 [CrossRef]
    [Google Scholar]
  22. Nabhan S., Wydra K., Linde M., Debener T.. 2012; The use of two complementary DNA assays, AFLP and MLSA, for epidemic and phylogenetic studies of pectolytic enterobacterial strains with focus on the heterogeneous species Pectobacterium carotovorum. Plant Pathol61:498–508 [CrossRef]
    [Google Scholar]
  23. Nabhan S., De Boer S. H., Maiss E., Wydra K.. 2013; Pectobacterium aroidearum sp. nov., a soft rot pathogen with preference for monocotyledonous plants. Int J Syst Evol Microbiol63:2520–2525 [CrossRef][PubMed]
    [Google Scholar]
  24. Nykyri J., Niemi O., Koskinen P., Nokso-Koivisto J., Pasanen M., Broberg M., Plyusnin I., Törönen P., Holm L. et al. 2012; Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog8:e1003013 [CrossRef][PubMed]
    [Google Scholar]
  25. Pasanen M., Laurila J., Brader G., Palva E. T., Ahola V., van der Wolf J., Hannukkala A., Pirhonen M.. 2013; Characterisation of Pectobacterium wasabiae and Pectobacterium carotovorum subsp. carotovorum isolates from diseased potato plants in Finland. Ann Appl Biol163:403–419 [CrossRef]
    [Google Scholar]
  26. Perombelon M. C. M.. 2002; Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Path51:1–12[CrossRef]
    [Google Scholar]
  27. Perombelon M. C. M., Kelman A.. 1980; Ecology of the soft rot Erwinias. Annu Rev Phytopathol18:361–387 [CrossRef]
    [Google Scholar]
  28. Pitman A. R., Harrow S. A., Visnovsky S. B.. 2010; Genetic characterisation of Pectobacterium wasabiae causing soft rot disease of potato in New Zealand. Eur J Plant Pathol126:423–435 [CrossRef]
    [Google Scholar]
  29. Pritchard L., Glover R. H., Humphris S., Elphinstone J. G., Toth I. K.. 2016; Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods8:12–24 [CrossRef]
    [Google Scholar]
  30. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  31. Tamura K., Nei M., Kumar S.. 2004; Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A101:11030–11035 [CrossRef][PubMed]
    [Google Scholar]
  32. Varghese N. J., Mukherjee S., Ivanova N., Konstantinidis K. T., Mavrommatis K., Kyrpides N. C., Pati A.. 2015; Microbial species delineation using whole genome sequences. Nucleic Acids Res43:6761–6771 [CrossRef][PubMed]
    [Google Scholar]
  33. Waleron M., Waleron K., Lojkowska E.. 2013; Occurrence of Pectobacterium wasabiae in potato field samples. Eur J Plant Pathol137:149–158 [CrossRef]
    [Google Scholar]
  34. Zhang Y., Fan Q., Loria R.. 2016; A re-evaluation of the taxonomy of phytopathogenic genera Dickeya and Pectobacterium using whole-genome sequencing data. Syst Appl Microbiol39:252–259 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001524
Loading
/content/journal/ijsem/10.1099/ijsem.0.001524
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error