1887

Abstract

Following the exposure of a biofilm sample from a hydrothermal spring cave (Gellért Hill, Budapest, Hungary) to gamma radiation, a strain designated FeSTC15-38 was isolated and studied by polyphasic taxonomic methods. The spherical-shaped cells stained Gram-negative, and were aerobic and non-motile. The pH range for growth was pH 6.0–9.0, with an optimum at pH 7.0. The temperature range for growth was 20–37 °C, with an optimum at 28 °C. Phylogenetic analysis based on the 16S rRNA gene sequence of the isolate indicated that the organism belongs to the genus . The highest sequence similarities appeared with KR-140 (94.1 %), PB314 (93.3 %) and 5516T-11 (92.7 %). The DNA G+C content of the novel strain was 68.2 mol%. The predominant fatty acids (>10 %) were iso-C and Cω7, and the cell-wall peptidoglycan type was A3β -Orn–Gly, corroborating the assignment of the strain to the genus . Strain FeSTC15-38 contained MK-8 as the major menaquinone and several unidentified phospholipids, glycolipids and phosphoglycolipids. Resistance to gamma radiation (D) of strain FeSTC15-38 was <3.0 kGy. According to phenotypic and genotypic data, strain FeSTC15-38 represents a novel species for which the name sp. nov. is proposed. The type strain is FeSTC15-38 (=NCAIM B.02630=DSM 101791).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001519
2016-12-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5345.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001519&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  2. Barrow G. I., Feltham R. K. A.. 2003; Cowan and Steel’s Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press;
    [Google Scholar]
  3. Battista J. R., Rainey F. A.. 2001; Family I. Deinococcaceae Brooks and Murray 1981, 356, VP emend. Rainey, Nobre, Schumann, Stackebrandt and da Costa 1997, 513. In The Archaea and the Deeply Branching and Phototrophic Bacteria (Bergey's Manual of Systematic Bacteriology)vol. 1 pp.395–403 Edited by Boone D. R., Castenholz R. W.. New York: Springer-Verlag;
    [Google Scholar]
  4. Brooks B. W., Murray R. G. E.. 1981; Nomenclature for ‘Micrococcus radiodurans’ and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol31:353–360 [CrossRef]
    [Google Scholar]
  5. Borsodi A. K., Micsinai A., Kovács G., Tóth E. M., Schumann P., Kovács A. L., Böddi B., Márialigeti K.. 2003; Pannonibacter phragmitetus gen. nov., sp. nov., a novel alkalitolerant bacterium isolated from decomposing reed rhizomes in a Hungarian soda lake. Int J Syst Evol Microbiol53:555–561 [CrossRef][PubMed]
    [Google Scholar]
  6. Borsodi A. K., Knáb M., Krett G., Makk J., Márialigeti K., Erőss A., Mádl-Szőnyi J.. 2012; Biofilm bacterial communities inhabiting the cave walls of the buda thermal karst system, Hungary. Geomicrobiol J29:611–627 [CrossRef]
    [Google Scholar]
  7. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  8. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  9. Dobosy P., Sávoly Z., Óvári M., Mádl-Szőnyi J., Záray G.. 2016; Microchemical characterization of biogeochemical samples collected from the buda thermal karst system, Hungary. Microchem J124:116–120 [CrossRef]
    [Google Scholar]
  10. Embley T. M., Wait R.. 1994; Structural lipids of Eubacteria. In Chemical Methods in Prokaryotic Systematics pp.141–147 Edited by Goodfellow M., O’Donnell A. G.. New York: John Wiley and Sons;
    [Google Scholar]
  11. Erőss A.. 2010; Characterization of fluids and evaluation of their effects on karst development at the Rózsadomb and Gellért Hill, Buda thermal karst, Hungary. Ph.D. Dissertation
    [Google Scholar]
  12. Erőss A., Mádl-Szőnyi J., Surbeck H., Horváth Á., Goldscheider N., Csoma A. É.. 2012; Radionuclides as natural tracers for the characterization of fluids in regional discharge areas, buda thermal karst, Hungary. J Hydrol426–427:124–137 [CrossRef]
    [Google Scholar]
  13. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  14. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K.. 1997; Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol47:1129–1133 [CrossRef][PubMed]
    [Google Scholar]
  15. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  16. Hugh R., Leifson E.. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol66:24–26[PubMed]
    [Google Scholar]
  17. Im W. T., Jung H. M., Ten L. N., Kim M. K., Bora N., Goodfellow M., Lim S., Jung J., Lee S. T.. 2008; Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol58:2348–2353 [CrossRef][PubMed]
    [Google Scholar]
  18. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  19. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  21. Minnikin D. E., Collins M. D., Goodfellow M.. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [CrossRef]
    [Google Scholar]
  22. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F. O.. 2013; The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res41:D590–D596 [CrossRef][PubMed]
    [Google Scholar]
  23. Rainey F. A., Nobre M. F., Schumann P., Stackebrandt E., da Costa M. S.. 1997; Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int J Syst Bacteriol47:510–514 [CrossRef][PubMed]
    [Google Scholar]
  24. Rainey F. A., Ray K., Ferreira M., Gatz B. Z., Nobre M. F., Bagaley D., Rash B. A., Park M. J., Earl A. M. et al. 2005; Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol71:5225–5235 [CrossRef][PubMed]
    [Google Scholar]
  25. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  26. Schumann P.. 2011; Peptidoglycan structure. Methods Microbiol38:101–129[CrossRef]
    [Google Scholar]
  27. Shashidhar R., Bandekar J. R.. 2006; Deinococcus mumbaiensis sp. nov., a radiation-resistant pleomorphic bacterium isolated from Mumbai, India. FEMS Microbiol Lett254:275–280 [CrossRef][PubMed]
    [Google Scholar]
  28. Srinivasan S., Kim M. K., Lim S., Joe M., Lee M.. 2012; Deinococcus daejeonensis sp. nov., isolated from sludge in a sewage disposal plant. Int J Syst Evol Microbiol62:1265–1270 [CrossRef][PubMed]
    [Google Scholar]
  29. Stead D. E., Sellwood J. E., Wilson J., Viney I.. 1992; Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 72:315–321 [CrossRef]
    [Google Scholar]
  30. Tamaoka J., Komagata K.. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett25:125–128 [CrossRef]
    [Google Scholar]
  31. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  32. Yamada K., Komagata K.. 1972; Taxonomic studies on coryneform bacteria. IV. Morphological, cultural, biochemical and physiological characteristics. J Gen Appl Microbiol18:399–416[CrossRef]
    [Google Scholar]
  33. Yoo S. H., Weon H. Y., Kim S. J., Kim Y. S., Kim B. Y., Kwon S. W.. 2010; Deinococcus aerolatus sp. nov. and Deinococcus aerophilus sp. nov., isolated from air samples. Int J Syst Evol Microbiol60:1191–1195 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001519
Loading
/content/journal/ijsem/10.1099/ijsem.0.001519
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error