1887

Abstract

A novel, pale yellow-coloured, Gram-staining-negative, aerobic, rod-shaped and non-motile bacterium, designated as strain CC-YY411, was isolated from the food-waste compost and subjected to polyphasic taxonomy. Strain CC-YY411 exhibited the highest pairwise 16S rRNA gene sequence similarity to Sphingobacterium thermophilum JCM 17858 (94.6 %) while sharing 94.1 to 89.7 % similarities with other Sphingobacterium species. Novel strain established a discrete phylogenetic lineage within the clade that accommodated validly established members of the genus Sphingobacterium . The polar lipid profile of strain CC-YY411 contained major amounts of phosphatidylethanolamine, one unidentified lipid and two unidentified aminolipids besides accommodating trace amounts of a sphingolipid, two phospholipids, an unidentified aminophospholipid and an unidentified glycolipid. The DNA G+C content of strain CC-YY411 was 34.5 mol%. The major and minor respiratory quinones were MK-7 (89.1 %) and MK-6 (10.9 %), respectively. The predominant fatty acids were iso-C15 : 0 (24.0 %), iso-C17 : 0 3-OH (11.9 %), iso-C15 : 0 3-OH (6.9 %), C15 : 1ω5c (5.5 %) and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) (32.0 %). Based on the phylogenetic, phenotypic and chemotaxonomic distinctiveness, strain CC-YY411 represents a novel species of Sphingobacterium , for which the name Sphingobacterium cibi sp. nov. is proposed. The type strain is CC-YY411 (=BCRC 80430=JCM 18407). Amended species descriptions of Sphingobacterium spiritivorum (Holmes et al. 1982) Yabuuchi et al. 1983 and Sphingobacterium thermophilum Yabe et al. 2013 are also proposed based on new data obtained in this study.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001517
2016-12-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5336.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001517&mimeType=html&fmt=ahah

References

  1. Abràmoff M. D., Magalhães P. J., Ram S. J..( 2004;). Image processing with imageJ. . Biophotonics Int 11: 36–42.
    [Google Scholar]
  2. Albert R. A., Waas N. E., Pavlons S. C., Pearson J. L., Ketelboeter L., Rosselló-Móra R., Busse H. J..( 2013;). Sphingobacterium psychroaquaticum sp. nov., a psychrophilic bacterium isolated from Lake Michigan water. . Int J Syst Evol Microbiol 63: 952–958. [CrossRef] [PubMed]
    [Google Scholar]
  3. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F..( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci U S A 75: 4801–4805. [CrossRef] [PubMed]
    [Google Scholar]
  4. Choi H. A., Lee S. S..( 2012;). Sphingobacterium kyonggiense sp. nov., isolated from chloroethene-contaminated soil, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium mizutaii. . Int J Syst Evol Microbiol 62: 2559–2564. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W..( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57: 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  6. Clark W. A..( 1976;). Notes a simple leifson flagella stain. . J Clin Microbiol 3: 632–634.
    [Google Scholar]
  7. Collins M. D..( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M., Minnikin D. E.. London:: Academic Press;.
    [Google Scholar]
  8. Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C..( 1989;). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. . Nucleic Acids Res 17: 7843–7853. [CrossRef] [PubMed]
    [Google Scholar]
  9. Embley T. M., Wait R..( 1994;). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M., O'Donnell A. G.. Chichester:: Wiley;.
    [Google Scholar]
  10. Felsenstein J..( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  11. Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  12. Felsenstein J..( 1993;). phylip (Phylogeny Inference Package), version 3.5.1. . Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  13. Feng H., Zeng Y., Huang Y..( 2014;). Sphingobacterium paludis sp. nov., isolated from wetland soil. . Int J Syst Evol Microbiol 64: 3453–3458. [CrossRef] [PubMed]
    [Google Scholar]
  14. Fitch W. M..( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20: 406–416. [CrossRef]
    [Google Scholar]
  15. Goodfellow M., O’Donnell A. G..( 1993;). Roots of bacterial systematics. . In Handbook of New Bacterial Systematics, pp. 3–54. Edited by Goodfellow M., O’Donnell A. G.. London:: Academic Press Ltd;.
    [Google Scholar]
  16. He X., Xiao T., Kuang H., Lan X., Tudahong M., Osman G., Fang C., Rahman E..( 2010;). Sphingobacterium shayense sp. nov., isolated from forest soil. . Int J Syst Evol Microbiol 60: 2377–2381. [CrossRef] [PubMed]
    [Google Scholar]
  17. Holmes B., Owen R. J., Hollis D. G..( 1982;). Flavobacterium spiritivorum, a new species isolated from human clinical specimens. . Int J Syst Bacteriol 32: 157–165. [CrossRef]
    [Google Scholar]
  18. Jiang S., Chen M., Su S., Yang M., Li A., Zhang C., Lin M., Zhang W., Luo X..( 2014;). Sphingobacterium arenae sp. nov., isolated from sandy soil. . Int J Syst Evol Microbiol 64: 248–253. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kämpfer P., Busse H.-J., Kleinhagauer T., McInroy J. A., Glaeser S. P..( 2016;). Sphingobacterium zeae sp. nov., an endophyte of maize. . Int J Syst Evol Microbiol 66: 2643–2649. [CrossRef]
    [Google Scholar]
  20. Kato M., Muto Y., Tanaka-Bandoh K., Watanabe K., Ueno K..( 1995;). Sphingolipid composition in Bacteroides species. . Anaerobe 1: 135–139. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kim K. H., Ten L. N., Liu Q. M., Im W. T., Lee S. T..( 2006;). Sphingobacterium daejeonense sp. nov., isolated from a compost sample. . Int J Syst Evol Microbiol 56: 2031–2036. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kim M., Oh H. S., Park S. C., Chun J..( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. . Int J Syst Evol Microbiol 64: 346–351. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kimura M..( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  24. Lee D. H., Hur J. S., Kahng H. Y..( 2013;). Sphingobacterium cladoniae sp. nov., isolated from lichen, Cladonia sp., and emended description of Sphingobacterium siyangense. . Int J Syst Evol Microbiol 63: 755–760. [CrossRef] [PubMed]
    [Google Scholar]
  25. Li G. D., Chen X., Li Q. Y., Xu F. J., Qiu S. M., Jiang Y., Jiang C. L..( 2015;). Sphingobacterium rhinocerotis sp. nov., isolated from the faeces of Rhinoceros unicornis. . Antonie Van Leeuwenhoek 108: 1099–1105. [CrossRef] [PubMed]
    [Google Scholar]
  26. Li Y., Song L.-M., Guo M.-W., Wang L.-F., Liang W.-X..( 2016;). Description of Sphingobacterium populi sp. nov., isolated from bark of Populus x euramericana. . Int J Syst Evol Microbiol 66: 3456–3462.[CrossRef]
    [Google Scholar]
  27. Liu R., Liu H., Zhang C. X., Yang S. Y., Liu X. H., Zhang K. Y., Lai R..( 2008;). Sphingobacterium siyangense sp. nov., isolated from farm soil. . Int J Syst Evol Microbiol 58: 1458–1462. [CrossRef] [PubMed]
    [Google Scholar]
  28. Liu J., Yang L. L., Xu C. K., Xi J. Q., Yang F. X., Zhou F., Zhou Y., Mo M. H., Li W. J..( 2012;). Sphingobacterium nematocida sp. nov., a nematicidal endophytic bacterium isolated from tobacco. . Int J Syst Evol Microbiol 62: 1809–1813. [CrossRef] [PubMed]
    [Google Scholar]
  29. Liu H., Zhang J., Chen D., Cao L., Lu P., Wu Z., Yang F., Li S., Hong Q..( 2013;). Sphingobacterium changzhouense sp. nov., a bacterium isolated from a rice field. . Int J Syst Evol Microbiol 63: 4515–4518. [CrossRef] [PubMed]
    [Google Scholar]
  30. Long X., Liu B., Zhang S., Zhang Y., Zeng Z., Tian Y..( 2016;). Sphingobacterium griseoflavum sp. nov., isolated from the insect Teleogryllus occipitalis living in deserted crop land. . Int J Syst Evol Microbiol 66: 1956–1961. [CrossRef] [PubMed]
    [Google Scholar]
  31. Meier-Kolthoff J. P., Göker M., Spröer C., Klenk H.-P..( 2013;). When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 195: 413–418. [CrossRef] [PubMed]
    [Google Scholar]
  32. Mesbah M., Premachandran U., Whitman W. B..( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167. [CrossRef]
    [Google Scholar]
  33. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H..( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2: 233–241. [CrossRef]
    [Google Scholar]
  34. Murray R. G. E., Doetsch R. N., Robinow C. F..( 1994;). Determination and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 32–34. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  35. Paisley R..( 1996;). MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual. Newark, DE:: MIDI;.
    [Google Scholar]
  36. Parte A. C..( 2014;). LPSN – list of prokaryotic names with standing in nomenclature. . Nucleic Acids Res 42: D613–D616. [CrossRef] [PubMed]
    [Google Scholar]
  37. Peng S., Hong D. D., Xin Y. B., Jun L. M., Hong W. G..( 2014;). Sphingobacterium yanglingense sp. nov., isolated from the nodule surface of soybean. . Int J Syst Evol Microbiol 64: 3862–3866. [CrossRef] [PubMed]
    [Google Scholar]
  38. Rashid M. H., Kornberg A..( 2000;). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. . Proc Natl Acad Sci U S A 97: 4885–4890. [CrossRef] [PubMed]
    [Google Scholar]
  39. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  40. Sasser M..( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, , MIDI Technical Note 101.. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  41. Schmidt V. S., Wenning M., Scherer S..( 2012;). Sphingobacterium lactis sp. nov. and Sphingobacterium alimentarium sp. nov., isolated from raw milk and a dairy environment. . Int J Syst Evol Microbiol 62: 1506–1511. [CrossRef] [PubMed]
    [Google Scholar]
  42. Siddiqi M. Z., Muhammad Shafi S., Choi K. D., Im W.-T..( 2016;). Sphingobacterium jejuense sp. nov., with ginsenosides converting activity, isolated from compost. . Int J Syst Evol Microbiol 66: 4433–4439. [CrossRef] [PubMed]
    [Google Scholar]
  43. Stackebrandt E., Ebers J..( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiology Today 33: 152–155.
    [Google Scholar]
  44. Sun L. N., Zhang J., Chen Q., He J., Li S. P..( 2013;). Sphingobacterium caeni sp. nov., isolated from activated sludge. . Int J Syst Evol Microbiol 63: 2260–2264. [CrossRef] [PubMed]
    [Google Scholar]
  45. Sun J. Q., Liu M., Wang X. Y., Xu L., Wu X. L..( 2015;). Sphingobacterium suaedae sp. nov., isolated from the rhizosphere soil of Suaeda corniculata. . Int J Syst Evol Microbiol 65: 4508–4513. [CrossRef] [PubMed]
    [Google Scholar]
  46. Takeuchi M., Yokota A..( 1992;). Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov. and two genospecies of the genus Sphingobacterium, and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum. . J Gen Appl Microbiol 38: 465–482. [CrossRef]
    [Google Scholar]
  47. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  48. Ten L., Liu Q. M., Im W. T., Aslam Z., Lee S. T..( 2006;). Sphingobacterium composti sp. nov., a novel DNase-producing bacterium isolated from compost. . J Microbiol Biotechnol 16: 1728–1733.
    [Google Scholar]
  49. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G..( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25: 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  50. Wang X., Zhu S.-J., Yu X., Zhang Y.-K., Zhang H., Zhang C.-F., Yang H.-X., Jin W., Hu G., Hong Q..( 2016;). Sphingobacterium chuzhouense sp. nov., isolated from farmland soil. . Int J Syst Evol Microbiol. [CrossRef]
    [Google Scholar]
  51. Wei W., Zhou Y., Wang X., Huang X., Lai R..( 2008;). Sphingobacterium anhuiense sp. nov., isolated from forest soil. . Int J Syst Evol Microbiol 58: 2098–2101. [CrossRef] [PubMed]
    [Google Scholar]
  52. Xiao T., He X., Cheng G., Kuang H., Ma X., Yusup K., Hamdun M., Gulsimay A., Fang C., Rahman E..( 2013;). Sphingobacterium hotanense sp. nov., isolated from soil of a Populus euphratica forest, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium shayense. . Int J Syst Evol Microbiol 63: 815–820. [CrossRef] [PubMed]
    [Google Scholar]
  53. Xiao N., Liu Y., Gu Z., Liu X., Jiao N., Liu H., Zhou Y., Shen L..( 2015;). Sphingobacterium yamdrokense sp. nov., isolated from Lake Yamdrok. . Antonie van Leeuwenhoek 107: 1331–1336. [CrossRef] [PubMed]
    [Google Scholar]
  54. Yabe S., Aiba Y., Sakai Y., Hazaka M., Kawahara K., Yokota A..( 2013;). Sphingobacterium thermophilum sp. nov., of the phylum Bacteroidetes, isolated from compost. . Int J Syst Evol Microbiol 63: 1584–1588. [CrossRef] [PubMed]
    [Google Scholar]
  55. Yabuuchi E., Kaneko T., Yano I., Moss C. W., Miyoshi N..( 1983;). Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov: glucose-nonfermenting Gram-negative rods in CDC Groups IIK-2 and IIb. . Int J Syst Bacteriol 33: 580–598. [CrossRef]
    [Google Scholar]
  56. Young C. C., Kämpfer P., Shen F. T., Lai W. A., Arun A. B..( 2005;). Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca Sativa L. (garden lettuce). . Int J Syst Evol Microbiol 55: 423–426. [CrossRef] [PubMed]
    [Google Scholar]
  57. Zhang J., Zheng J. W., Cho B. C., Hwang C. Y., Fang C., He J., Li S. P..( 2012;). Sphingobacterium wenxiniae sp. nov., a cypermethrin-degrading species from activated sludge. . Int J Syst Evol Microbiol 62: 683–687. [CrossRef] [PubMed]
    [Google Scholar]
  58. Zhao P., Zhou Z., Chen M., Lin W., Zhang W., Wei G..( 2014;). Sphingobacterium gobiense sp. nov., isolated from soil of the Gobi Desert. . Int J Syst Evol Microbiol 64: 3931–3935. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001517
Loading
/content/journal/ijsem/10.1099/ijsem.0.001517
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error