1887

Abstract

A Gram-stain-positive, rod-shaped bacterium (strain JZ16) was isolated from raw cow's milk from the bulk tank of a dairy farm in Germany. The 16S rRNA gene sequence of the isolate showed a similarity of 98.3 % to the nearest related type strain ATCC 13032, a similarity of 97.6 % to GIMN1.010 and a similarity of 97.4 % to DSM 20147. Determination of chemotaxonomic characteristics revealed oleic acid (18 : 1 9) as the predominant fatty acid, major amounts of hexadecanoic acid (16 : 0) and minor amounts of heptadecanoic acid (17 : 0). The isolate showed an acetyl type of peptidoglycan and corynemycolic acids. The menaquinones MK-8(H) and MK-9(H) and the phospholipids diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside were detected, which was in agreement with the description of the genus . Strain JZ16 was positive for reduction of nitrate to nitrite, pyrazinamidase, β-glucuronidase, β-glucosidase and urease activities. Acid was produced from -glucose, -ribose and -mannitol, but not from -xylose, maltose, lactose, sucrose and glycogen. The results of phylogenetic, phenotypic and chemotaxonomic analyses enabled the differentiation of the isolated strain from other closely related species of the genus . Therefore, strain JZ16 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JZ16 (=DSM 100882=CCUG 69192=LMG 29813).

Keyword(s): Corynebacterium and raw milk
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001509
2016-12-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5288.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001509&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  2. Bernard K. A., Funke G.. 2012; Genus I. Corynebacterium Lehmann and Neumann 1896, 350AL, emend. Bernard, Wiebke, Burdz, Reimer, Ng, Singh, Schindle and Pacheo 2010, 877. In Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 5A pp.245–289 Edited by Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B.. New York: Springer;
    [Google Scholar]
  3. Brennan N. M., Brown R., Goodfellow M., Ward A. C., Beresford A. T., Simpson P. J., Fox P. F., Cogan T. M.. 2001; Corynebacterium mooreparkense sp. nov. and Corynebacterium casei sp. nov., isolated from the surface of a smear-ripened cheese. Int J Syst Evol Microbiol51:843–852 [CrossRef][PubMed]
    [Google Scholar]
  4. Buck J. D.. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol44:992–993[PubMed]
    [Google Scholar]
  5. CLSI 2013; Performance Standards for Antimicrobial Disk and Dilution Susceptibility Test for Bacteria Isolated from Animals, Approved Standard – fourth edition. Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  6. Dolci P., Barmaz A., Zenato S., Pramotton R., Alessandrina V., Cocolin L., Rantsiou K., Ambrosoloi R.. 2009; Maturing dynamics of surface microflora in Fontina PDO cheese studied by culture-dependent and -independent methods. J Appl Microbiol106:278–287 [CrossRef][PubMed]
    [Google Scholar]
  7. Euzéby J. P.. 1997; List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol47:590–592 [CrossRef][PubMed]
    [Google Scholar]
  8. Fricker M., Skånseng B., Rudi K., Stessl B., Ehling-Schulz M.. 2011; Shift from farm to dairy tank milk microbiota revealed by a polyphasic approach is independent from geographical origin. Int J Food Microbiol145:S24–S30 [CrossRef][PubMed]
    [Google Scholar]
  9. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.. (editors) 1981; Manual of Methods for General Bacteriology Washington: American Society for Microbiology;
    [Google Scholar]
  10. Gordon D., Green P.. 2013; Consed: a graphical editor for next-generation sequencing. Bioinformatics29:2936–2937 [CrossRef][PubMed]
    [Google Scholar]
  11. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. 2007; DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  12. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  13. Hommez J., Devriese L. A., Vaneechoutte M., Riegel P., Butaye P., Haesebrouck F.. 1999; Identification of nonlipophilic corynebacteria isolated from dairy cows with mastitis. J Clin Microbiol37:954–957[PubMed]
    [Google Scholar]
  14. Khamis A., Raoult D., La Scola B.. 2004; rpoB gene sequencing for identification of Corynebacterium species. J Clin Microbiol42:3925–3931 [CrossRef][PubMed]
    [Google Scholar]
  15. Khamis A., Raoult D., La Scola B.. 2005; Comparison between rpoB and 16S rRNA gene sequencing for molecular identification of 168 clinical isolates of Corynebacterium. J Clin Microbiol43:1934–1936 [CrossRef][PubMed]
    [Google Scholar]
  16. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  17. Kim M., Oh H. S., Park S. C., Chun J.. 2014; Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity demarcation of prokaryotes. Int J Syst Evol Microbiol64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  18. Lehmann K. B., Neumann R.. 1896; Atlas Und Grundriss Der Bakteriologie Und Lehrbuch Der Speziellen Bakteriologischen Diagnostik München: J. F. Lehmann;
    [Google Scholar]
  19. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  20. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  21. Watts J. L., Lowery D. E., Teel J. F., Rossbach S.. 2000; Identification of Corynebacterium bovis and other Coryneforms isolated from bovine mammary glands. J Dairy Sci83:2373–2379 [CrossRef][PubMed]
    [Google Scholar]
  22. Weber M., Geißert J., Kruse M., Lipski A.. 2014; Comparative analysis of bacterial community composition in bulk tank raw milk by culture-dependent and culture-independent methods using the viability dye propidium monoazide. J Dairy Sci97:6761–6776 [CrossRef][PubMed]
    [Google Scholar]
  23. Wiertz R., Schulz S. C., Müller U., Kämpfer P., Lipski A.. 2013; Corynebacterium frankenforstense sp. nov. and Corynebacterium lactis sp. nov., isolated from raw cow milk. Int J Syst Evol Microbiol63:4495–4501 [CrossRef][PubMed]
    [Google Scholar]
  24. Zhou Z., Yuan M., Tang R., Chen M., Lin M., Zhang W.. 2012; Corynebacterium deserti sp. nov., isolated from desert sand. Int J Syst Evol Microbiol62:791–794 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001509
Loading
/content/journal/ijsem/10.1099/ijsem.0.001509
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error