1887

Abstract

A Gram-stain-positive, short-rod, aerobic bacterium, designated as strain LAM9155, was isolated from saline soil sample collected from Lingxian County, Shandong Province, PR China. The strain grew optimally at 25–30 °C, pH 7.0 and 0.5 % (w/v) NaCl. The 16S rRNA gene sequence analysis revealed that strain LAM9155 belonged to the genus and was closely related to EGI 6500707 (99.4 %), 801 (98.6 %) and MSL-08 (96.2 %). The DNA–DNA hybridization values between strain LAM9155 and JCM 30093 and between strain LAM9155 and DSM 10309 were 40.2±2.1 and 32.8±1.6 %, respectively. The major fatty acids of LAM9155 were anteiso-C, anteiso-C and iso-C. The cell-wall analysis showed the B-type peptidoglycan containing alanine, glutamate, glycine, serine and lysine and that the cell wall contained the sugars galactose and ribose. The genomic DNA G+C content of strain LAM9155 was 68.2 mol%. The predominant menaquinone was MK-9. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, one unknown glycolipid and four unknown lipids. Based on the DNA–DNA hybridization and phenotypic, phylogenetic and chemotaxonomic properties, strain LAM9155 could be distinguished from the recognized species of the genus and was suggested to represent a novel species, for which the name sp. nov. is proposed. The type strain is LAM9155 (=ACCC 19902=JCM 30848). Moreover, the transfer of Dastager 2008 to gen. nov. as comb. nov. (type strain MSL-08=DSM 19442=KCTC 19311) is also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001504
2016-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5252.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001504&mimeType=html&fmt=ahah

References

  1. Dastager S. G., Lee J. C., Ju Y. J., Park D. J., Kim C. J. 2008; Frigoribacterium mesophilum sp. nov., a mesophilic actinobacterium isolated from Bigeum Island, Korea. Int J Syst Evol Microbiol 58:1869–1872 [View Article][PubMed]
    [Google Scholar]
  2. De Ley J., Cattoir H., Reynaerts R. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142[PubMed] [CrossRef]
    [Google Scholar]
  3. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  4. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  5. Kämpfer P., Rainey F. A., Andersson M. A., Nurmiaho Lassila E. L., Ulrych U., Busse H. J., Weiss N., Mikkola R., Salkinoja-Salonen M. 2000; Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae . Int J Syst Evol Microbiol 50:355–363 [View Article][PubMed]
    [Google Scholar]
  6. Kelly K. L. 1964; Color-name charts illustrated with centroid colors. In Inter-Society Color Council-National Bureau of Standards Chicago: United States National Bureau of Standards;
    [Google Scholar]
  7. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012a; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  8. Kim S. J., Jang Y. H., Hamada M., Tamura T., Ahn J. H., Weon H. Y., Suzuki K., Kwon S. W. 2012b; Homoserinimonas aerilata gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from an air sample in Korea. J Microbiol 50:673–679 [View Article][PubMed]
    [Google Scholar]
  9. Kim S. J., Tamura T., Hamada M., Ahn J. H., Weon H. Y., Park I. C., Suzuki K., Kwon S. W. 2012c; Compostimonas suwonensis gen. nov., sp. nov., isolated from spent mushroom compost. Int J Syst Evol Microbiol 62:2410–2416 [View Article][PubMed]
    [Google Scholar]
  10. Kim S. J., Lim J. M., Ahn J. H., Weon H. Y., Hamada M., Suzuki K., Ahn T. Y., Kwon S. W. 2014; Description of Galbitalea soli gen. nov., sp. nov., and Frondihabitans sucicola sp. nov. Int J Syst Evol Microbiol 64:572–578 [View Article][PubMed]
    [Google Scholar]
  11. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  12. Li H. R., Yu Y., Luo W., Zeng Y. X. 2010; Marisediminicola antarctica gen. nov., sp. nov., an actinobacterium isolated from the Antarctic. Int J Syst Evol Microbiol 60:2535–2539 [View Article][PubMed]
    [Google Scholar]
  13. Li A. H., Liu H. C., Xin Y. H., Kim S. G., Zhou Y. G. 2014; Glaciihabitans tibetensis gen. nov., sp. nov., a psychrotolerant bacterium of the family Microbacteriaceae, isolated from glacier ice water. Int J Syst Evol Microbiol 64:579–587 [View Article][PubMed]
    [Google Scholar]
  14. MacKenzie S. L. 1987; Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70:151–160[PubMed]
    [Google Scholar]
  15. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  16. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  17. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  18. Ruan Z., Wang Y., Song J., Jiang S., Wang H., Li Y., Zhao B., Jiang R., Zhao B. 2014; Kurthia huakuii sp. nov., isolated from biogas slurry, and emended description of the genus Kurthia . Int J Syst Evol Microbiol 64:518–521 [View Article][PubMed]
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  20. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y. 2002; Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52:841–849 [View Article][PubMed]
    [Google Scholar]
  21. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Meth Microbiol 18:123–156 [CrossRef]
    [Google Scholar]
  22. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477[PubMed]
    [Google Scholar]
  23. Schumann P., Zhang D. C., Redzic M., Margesin R. 2012; Alpinimonas psychrophila gen. nov., sp. nov., an actinobacterium of the family Microbacteriaceae isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 62:2724–2730 [View Article][PubMed]
    [Google Scholar]
  24. Shin N. R., Whon T. W., Roh S. W., Kim M. S., Kim Y. O., Bae J. W. 2012; Oceanisphaera sediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 62:1552–1557 [View Article][PubMed]
    [Google Scholar]
  25. Skerman V. B. D. 1967 A Guide to the Identification of the Genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  26. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849 [View Article]
    [Google Scholar]
  28. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  30. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  31. Wang H. F., Zhang Y. G., Chen J. Y., Guo J. W., Li L., Hozzein W. N., Zhang Y. M., Wadaan M. A., Li W. J. 2015; Frigoribacterium endophyticum sp. nov., an endophytic actinobacterium isolated from the root of Anabasis elatior (C. A. Mey.) Schischk. Int J Syst Evol Microbiol 65:1207–1212 [View Article][PubMed]
    [Google Scholar]
  32. Xu X. W., Huo Y. Y., Wang C. S., Oren A., Cui H. L., Vedler E., Wu M. 2011; Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae . Int J Syst Evol Microbiol 61:1817–1822 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001504
Loading
/content/journal/ijsem/10.1099/ijsem.0.001504
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error