1887

Abstract

A Gram-stain-negative, rod-shaped strain, Braz8, isolated from larvae of was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Braz8 was related most closely to species of the genus , with 95.6, 96.5 and 96.6 % similarity to the type strains of , and , respectively, and formed a separate branch in the phylogenetic tree next to the monophyletic cluster of the genus . Chemotaxonomic data supported the allocation of the strain to the family . The major fatty acids were C , C and C. The quinone system was composed of ubiquinones Q-8 and Q-7 (1 : 0.3), the predominant polar lipids were diphosphatidylglycerol and phosphatidylglycerol, and the polyamine pattern showed the major compound putrescine. However, qualitative and quantitative differences in the major polyamine, polar lipid profile and fatty acid patterns distinguished strain Braz8 from species of the genus . Phylogenetic analysis based on 16S rRNA gene sequences, average nucleotide identity, DNA–DNA hybridization, multilocus sequence analysis as well as physiological and biochemical tests distinguished strain Braz8 both genotypically and phenotypically from the three species but also showed its placement in the family . Thus, strain Braz8 is considered to represent a novel species of a new genus most closely related to the genus , for which the name gen. nov., sp. nov. is proposed. The type strain of is Braz8 (=LMG 29552=CIP 111088).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001497
2016-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5211.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001497&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitza W., Busse H.-J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [View Article]
    [Google Scholar]
  2. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A 75:4801–4805 [View Article][PubMed]
    [Google Scholar]
  3. Busse H.-J., Auling G. 1988; Polyamine Pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11:1–8 [View Article]
    [Google Scholar]
  4. Busse H.-J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [View Article]
    [Google Scholar]
  5. Coloqhoun J. A. 1997; Discovery of Deep-Sea Actinomycetes. PhD Dissertation. Research School of Biosciences. University of Kent, Canterbury.
  6. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M. 2007; DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91 [View Article][PubMed]
    [Google Scholar]
  8. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [View Article][PubMed]
    [Google Scholar]
  9. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  10. Kämpfer P., Lindh J. M., Terenius O., Haghdoost S., Falsen E., Busse H. J., Faye I. 2006; Thorsellia anophelis gen. nov., sp. nov., a new member of the Gammaproteobacteria. Int J Syst Evol Microbiol 56:335–338 [View Article][PubMed]
    [Google Scholar]
  11. Kämpfer P., Glaeser S. P., Nilsson L. K., Eberhard T., Håkansson S., Guy L., Roos S., Busse H. J., Terenius O. 2015; Proposal of Thorsellia kenyensis sp. nov. and Thorsellia kandunguensis sp. nov., isolated from larvae of Anopheles arabiensis, as members of the family Thorselliaceae fam. nov. Int J Syst Evol Microbiol 65:444–451 [View Article][PubMed]
    [Google Scholar]
  12. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  13. Laporta G. Z., Linton Y. M., Wilkerson R. C., Bergo E. S., Nagaki S. S., Sant'Ana D. C., Sallum M. A. 2015; Malaria vectors in South America: current and future scenarios. Parasit Vectors 8:426 [View Article][PubMed]
    [Google Scholar]
  14. Lindh J. M., Terenius O., Faye I. 2005; 16S rRNA gene-based identification of midgut bacteria from field-caught Anopheles gambiae sensu lato and A. funestus mosquitoes reveals new species related to known insect symbionts. Appl Environ Microbiol 71:7217–7223 [View Article][PubMed]
    [Google Scholar]
  15. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar B. A., Lai T., Steppi S., Jobb G. et al. 2004; ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  16. Marinotti O., Cerqueira G. C., de Almeida L. G., Ferro M. I., Loreto E. L., Zaha A., Teixeira S. M., Wespiser A. R., Almeida E. Silva A. et al. 2013; The genome of Anopheles darlingi, the main neotropical malaria vector. Nucleic Acids Res 41:7387–7400 [View Article][PubMed]
    [Google Scholar]
  17. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M. 2013; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60 [View Article][PubMed]
    [Google Scholar]
  18. Pruesse E., Peplies J., Glöckner F. O. 2012; sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  19. Richter M., Rosselló-Móra R. 2009; Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  20. Stamatakis A. 2006; RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690 [View Article][PubMed]
    [Google Scholar]
  21. Stolz A., Busse H. J., Kämpfer P. 2007; Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57:572–576 [View Article][PubMed]
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  23. Tindall B. J. 1990a; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  24. Tindall B. J. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  25. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R. 2008; The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001497
Loading
/content/journal/ijsem/10.1099/ijsem.0.001497
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error