1887

Abstract

A Gram-stain-negative, rod-shaped strain, Braz8, isolated from larvae of Anopheles darlingi was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Braz8 was related most closely to species of the genus Thorsellia , with 95.6, 96.5 and 96.6 % similarity to the type strains of Thorsellia anophelis , Thorsellia kandunguensis and Thorsellia kenyensis , respectively, and formed a separate branch in the phylogenetic tree next to the monophyletic cluster of the genus Thorsellia . Chemotaxonomic data supported the allocation of the strain to the family Thorselliaceae . The major fatty acids were C18 : 1 ω7c, C16 : 0 and C14 : 0. The quinone system was composed of ubiquinones Q-8 and Q-7 (1 : 0.3), the predominant polar lipids were diphosphatidylglycerol and phosphatidylglycerol, and the polyamine pattern showed the major compound putrescine. However, qualitative and quantitative differences in the major polyamine, polar lipid profile and fatty acid patterns distinguished strain Braz8 from species of the genus Thorsellia . Phylogenetic analysis based on 16S rRNA gene sequences, average nucleotide identity, DNA–DNA hybridization, multilocus sequence analysis as well as physiological and biochemical tests distinguished strain Braz8 both genotypically and phenotypically from the three Thorsellia species but also showed its placement in the family Thorselliaceae . Thus, strain Braz8 is considered to represent a novel species of a new genus most closely related to the genus Thorsellia, for which the name Coetzeea brasiliensis gen. nov., sp. nov. is proposed. The type strain of Coetzeea brasiliensis is Braz8 (=LMG 29552=CIP 111088).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001497
2016-12-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5211.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001497&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitza W., Busse H.-J..( 1996;). Classification of bacteria isolated from a medieval wall painting. . J Biotechnol47:39–52. [CrossRef]
    [Google Scholar]
  2. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F..( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci U S A75:4801–4805. [CrossRef][PubMed]
    [Google Scholar]
  3. Busse H.-J., Auling G..( 1988;). Polyamine Pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol11:1–8. [CrossRef]
    [Google Scholar]
  4. Busse H.-J., Bunka S., Hensel A., Lubitz W..( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol47:698–708. [CrossRef]
    [Google Scholar]
  5. Coloqhoun J. A..( 1997;). Discovery of Deep-Sea Actinomycetes. PhD Dissertation. Research School of Biosciences. University of Kent, Canterbury. .
  6. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R..( (editors)) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  7. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M..( 2007;). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol57:81–91. [CrossRef][PubMed]
    [Google Scholar]
  8. Kämpfer P., Steiof M., Dott W..( 1991;). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol21:227–251. [CrossRef][PubMed]
    [Google Scholar]
  9. Kämpfer P., Kroppenstedt R. M..( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol42:989–1005. [CrossRef]
    [Google Scholar]
  10. Kämpfer P., Lindh J. M., Terenius O., Haghdoost S., Falsen E., Busse H. J., Faye I..( 2006;). Thorsellia anophelis gen. nov., sp. nov., a new member of the Gammaproteobacteria. . Int J Syst Evol Microbiol56:335–338. [CrossRef][PubMed]
    [Google Scholar]
  11. Kämpfer P., Glaeser S. P., Nilsson L. K., Eberhard T., Håkansson S., Guy L., Roos S., Busse H. J., Terenius O..( 2015;). Proposal of Thorsellia kenyensis sp. nov. and Thorsellia kandunguensis sp. nov., isolated from larvae of Anopheles arabiensis, as members of the family Thorselliaceae fam. nov. . Int J Syst Evol Microbiol65:444–451. [CrossRef][PubMed]
    [Google Scholar]
  12. Lane D. J..( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics. Edited by Stackebrandt E., Goodfellow M.. Chichester:: Wiley;.
    [Google Scholar]
  13. Laporta G. Z., Linton Y. M., Wilkerson R. C., Bergo E. S., Nagaki S. S., Sant'Ana D. C., Sallum M. A..( 2015;). Malaria vectors in South America: current and future scenarios. . Parasit Vectors8:426. [CrossRef][PubMed]
    [Google Scholar]
  14. Lindh J. M., Terenius O., Faye I..( 2005;). 16S rRNA gene-based identification of midgut bacteria from field-caught Anopheles gambiae sensu lato and A. funestus mosquitoes reveals new species related to known insect symbionts. . Appl Environ Microbiol71:7217–7223. [CrossRef][PubMed]
    [Google Scholar]
  15. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar B. A., Lai T., Steppi S., Jobb G. et al.( 2004;). ARB: a software environment for sequence data. . Nucleic Acids Res32:1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  16. Marinotti O., Cerqueira G. C., de Almeida L. G., Ferro M. I., Loreto E. L., Zaha A., Teixeira S. M., Wespiser A. R., Almeida E. Silva A. et al.( 2013;). The genome of Anopheles darlingi, the main neotropical malaria vector. . Nucleic Acids Res41:7387–7400. [CrossRef][PubMed]
    [Google Scholar]
  17. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M..( 2013;). Genome sequence-based species delimitation with confidence intervals and improved distance functions. . BMC Bioinformatics14:60. [CrossRef][PubMed]
    [Google Scholar]
  18. Pruesse E., Peplies J., Glöckner F. O..( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics28:1823–1829. [CrossRef][PubMed]
    [Google Scholar]
  19. Richter M., Rosselló-Móra R..( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A106:19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  20. Stamatakis A..( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics22:2688–2690. [CrossRef][PubMed]
    [Google Scholar]
  21. Stolz A., Busse H. J., Kämpfer P..( 2007;). Pseudomonas knackmussii sp. nov. . Int J Syst Evol Microbiol57:572–576. [CrossRef][PubMed]
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol28:2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  23. Tindall B. J..( 1990a;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett66:199–202. [CrossRef]
    [Google Scholar]
  24. Tindall B. J..( 1990b;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol13:128–130. [CrossRef]
    [Google Scholar]
  25. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R..( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol31:241–250. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001497
Loading
/content/journal/ijsem/10.1099/ijsem.0.001497
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error