Proposal of a type strain for (Woronin 1866) Von Tubeuf 1895, emended description of , and recognition of sp. nov. and sp. nov. Free

Abstract

Before the establishment of pure cultures, the species , ‘’ and ‘’ were proposed to encompass all causal agents of the nitrogen-fixing root nodules of dicotyledonous plants from the genera , or . The sole species with a validly published name, the type species , was described by as present in the root of alder. Until now no type strain has been designated for , even though the absence of a type strain has seriously inhibited the application of modern taxonomic methods to the genus . Thus, we propose that strain ACN14a, isolated in pure culture from ssp. with morphological properties matching the original description of , be recognized as the type strain of this species according to Rule 18f of the International Code of Nomenclature of Bacteria. We compared ACN14a to two strains, CcI3 and BMG5.12, isolated from and , respectively, based on chemotaxonomy, phenotype microarray data and molecular data retrieved from genome sequences. All three tested strains grew as branched hyphae, produced vesicles and multilocular sporangia containing non-motile spores and metabolized short fatty acids, TCA-cycle intermediates and carbohydrates. Chemotaxonomically, the three strains were indistinguishable with respect to phospholipids (phosphatidylinositol, diphosphatidylglycerol, glycophospholipids and phosphatidylglycerol) and cell-sugar composition (glucose, mannose, ribose, rhamnose, galactose and xylose, with the latter two being diagnostic for the genus). The major fatty acids identified in all three strains were iso-C, C 8, C, C and C. ACN14a and BMG5.12 also shared C 6, while C 9 was found to be unique to BMG5.12. The major menaquinones identified in all three novel type strains were MK-9(H), MK-9(H) and MK-9(H). MK-9(H) was shared by ACN14a and BMG5.12, while MK-10(H) and MK-8(H) were only found in BMG5.12. Analysis of 16S rRNA gene sequences showed 98.1–98.9 % identity between strains ACN14a, CcI3 and BMG5.12. Digital DNA–DNA hybridization values between the three type strains were well below 70 %. These results confirm the separation of the strains into three distinct species, , sp. nov. and sp. nov. Thus, we propose ACN14a (=DSM 45986=CECT 9034), CcI3 (=DSM 45818=CECT 9043) and BMG5.12 (=DSM 46783=CECT 9031) as the respective type strains.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001496
2016-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5201.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001496&mimeType=html&fmt=ahah

References

  1. Akimov V. N., Dobritsa S. V. 1992; Grouping of Frankia strains on the basis of DNA relatedness. Syst Appl Microbiol 15:372–379 [View Article]
    [Google Scholar]
  2. Akimov V. N., Dobritsa S. V., Stupar O. S. 1991; Grouping of Frankia strains by DNA:DNA homology: How many genospecies are in the genus Frankia? Nitrogen fixation. In Developments in Plant and Soil Sciences pp. 635–636 Edited by Polsinelli M., Materassi R., Vincenzini M. Dordrecht, The Netherlands: Kluwer Academic Publisher;
    [Google Scholar]
  3. An C. S., Wills J. W., Riggsby W. S., Mullin B. C. 1983; Deoxyribonucleic acid base composition of 12 Frankia isolates. Can J Bot 61:2859–2862 [CrossRef]
    [Google Scholar]
  4. An C. S., Riggsby W. S., Mullin B. C. 1985; Restriction pattern analysis of genomic DNA of Frankia isolates. Plant Soil 87:43–48 [CrossRef]
    [Google Scholar]
  5. Baker D. D. 1987; Relationships among pure cultured strains of Frankia based on host specificity. Physiol Plant 70:245–248 [View Article]
    [Google Scholar]
  6. Bautista G. H. H., Cruzb H. A., Nesme X., Valdés M., Mendoza H. A., Fernandez M. P. 2011; Genomospecies identification and phylogenomic relevance of AFLP analysis of isolated and non-isolated strains of Frankia spp. Syst Appl Microbiol 34:200–206 [View Article][PubMed]
    [Google Scholar]
  7. Becking J. H. 1970; Frankiaceae fam. nov. (Actinomycetales) with one new combination and six new species of the genus Frankia Brunchorst 1886, 174. Int J Syst Bacteriol 20:201–220 [View Article]
    [Google Scholar]
  8. Benson D. R., Silvester W. B. 1993; Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319
    [Google Scholar]
  9. Benson D. R., Clawson M. L. 2000; Evolution of the actinorhizal plant symbioses. A model system for analysis of biological process. In Prokaryotic Nitrogen Fixation pp. 207–224 Edited by Triplett E. W. Wymondham, UK: Horizon Scientific Press;
    [Google Scholar]
  10. Benson D. R., Brooks J. M., Huang Y., Bickhart D. M., Mastronunzio J. E. 2011; The biology of Frankia sp. strains in the post-genome era. Mol Plant Microbe Interact 24:1310–1316 [View Article][PubMed]
    [Google Scholar]
  11. Bloom R. A., Lechevalier M. P., Tate R. L. III 1989; Physiological, chemical, morphological, and plant infectivity characteristics of Frankia isolates from Myrica pennsylvanica: Correlation to DNA restriction patterns. Appl Environ Microbiol 55:2161–2166[PubMed]
    [Google Scholar]
  12. Brunchorst J. 1886; Über einige Wurzelanschwellungen, besonders diejenigen von Alnus und den Elaeagnaceen. Unters Bot Inst Tübingen 2:151–177
    [Google Scholar]
  13. Clawson M. L., Bourret A., Benson D. R. 2004; Assessing the phylogeny of Frankia-actinorhizal plant nitrogen-fixing root nodule symbioses with Frankia 16S rRNA and glutamine synthetase gene sequences. Mol Phylogenet Evol 31:131–138 [View Article][PubMed]
    [Google Scholar]
  14. Collins M. D. 1985; Analysis of isoprenoid quinone. Method Microbiol 18:329–366 [CrossRef]
    [Google Scholar]
  15. Collins M. D., Shah H. N. 1984; Fatty acid, menaquinone and polar lipid composition of Rothia dentocariosa . Arch Microbiol 137:247–249 [View Article]
    [Google Scholar]
  16. Edgar R. C. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [View Article]
    [Google Scholar]
  17. Fernandez M. P., Meugnier H., Grimont P. A. D., Bardin R. 1989; Deoxyribonucleic acid relatedness among members of the genus Frankia . Int J Syst Bacteriol 39:424–429 [View Article]
    [Google Scholar]
  18. Ganesh G., Misra A. K., Chapelon C., Normand P. 1994; Morphological and molecular characterization of Frankia sp. isolates from nodules of Alnus nepalensis don. Arch Microbiol 161:152–155
    [Google Scholar]
  19. Ghodhbane-Gtari F., Nouioui I., Chair M., Boudabous A., Gtari M. 2010; 16S–23S rRNA intergenic spacer region variability in the genus Frankia . Microb Ecol 60:487–495 [View Article][PubMed]
    [Google Scholar]
  20. Goloboff P. A., Farris J. S., Nixon K. C. 2008; TNT, a free program for phylogenetic analysis. Cladistics 24:774–786 [View Article]
    [Google Scholar]
  21. Gtari M., Brusetti L., Skander G., Mora D., Boudabous A., Daffonchio D. 2004; Isolation of Elaeagnus-compatible Frankia from soils collected in Tunisia. FEMS Microbiol Lett 234:349–355 [View Article][PubMed]
    [Google Scholar]
  22. Gtari M., Brusetti L., Hassen A., Mora D., Daffonchio D., Boudabous A. 2007; Genetic diversity among Elaeagnus compatible Frankia strains and sympatric-related nitrogen-fixing actinobacteria revealed by nifH sequence analysis. Soil Biol Biochem 39:372–377 [View Article]
    [Google Scholar]
  23. Gtari M., Tisa L. S., Normand P. 2013; Diversity of Frankia strains, actinobacterial symbionts of actinorhizal plants. In Symbiotic Endophytes pp. 123–148 Springer Berlin Heidelberg; [CrossRef]
    [Google Scholar]
  24. Hahn D., Mirza B., Benagli C., Vogel G., Tonolla M. 2011; Typing of nitrogen-fixing Frankia strains by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. Syst Appl Microbiol 34:63–68 [View Article][PubMed]
    [Google Scholar]
  25. Jeong S. C., Ritchie N. J., Myrold D. D. 1999; Molecular phylogenies of plants and Frankia support multiple origins of actinorhizal symbioses. Mol Phylogenet Evol 13:493–503 [View Article][PubMed]
    [Google Scholar]
  26. Kroppenstedt R. M. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367 [View Article]
    [Google Scholar]
  27. Kroppenstedt R. M., Goodfellow M. 2006; The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillispora and Thermomonospora. Archaea, Bacteria, Firmicutes, Actinomycetes. In The Prokaryotes: A Handbook on the Biology of Bacteria pp. 682–724 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York, NY, USA: Springer;
    [Google Scholar]
  28. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [View Article]
    [Google Scholar]
  29. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A. 1992 International Code of Nomenclature of Bacteria (1990 Revision). Bacteriological Code Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Lechevalier M. P. 1994; Taxonomy of the genus Frankia (Actinomycetales). Int J Syst Bacteriol 44:1–8 [View Article]
    [Google Scholar]
  31. Lechevalier M. P., Lechevalier H. A. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443 [View Article]
    [Google Scholar]
  32. Lechevalier M. P., Lechevalier H. A. 1979; The taxonomic position of the actinomycetic endophytes. In Symbiotic Nitrogen Fixation in the Management of Temperate Forests pp. 111–121 Edited by Gordon J. C., Wheeler C. T., Perry D. A. Forest Research Laboratory, Corvallis, OR: Oregon State University;
    [Google Scholar]
  33. Lechevalier M. P., Ruan J. S. 1984; Physiology and chemical diversity of Frankia spp. isolated from nodules of Comptonia peregrina (L.) Coult and Ceanothus americanus L. Plant Soil 78:15–22 [View Article]
    [Google Scholar]
  34. Lechevalier M. P., Lechevalier H. A. 1990; Systematics, isolation and culture of Frankia . In The Biology of Frankia and Actinorhizal Plants pp. 35–60 Edited by Schwintzer C. R., Tjepkema J. D. San Diego: Academic Press; [CrossRef]
    [Google Scholar]
  35. Lechevalier M. P., Horriere F., Lechevalier H. A. 1982; The biology of Frankia and related organisms. Dev Ind Microbiol 23:51–60
    [Google Scholar]
  36. Lechevalier M. P., Baker D., Horrière F. 1983; Physiology, chemistry, serology, and infectivity of two Frankia isolates from Alnus incana subsp. rugosa . Can J Bot 61:2826–2833 [View Article]
    [Google Scholar]
  37. Lefort V., Desper R., Gascuel O. 2015; FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 32:2798–2800 [View Article][PubMed]
    [Google Scholar]
  38. Lumini E., Bosco M. 1996; PCR-restriction fragment length polymorphism identification and host range of single-spore isolates of the flexible Frankia sp. strain UFI 132715. Appl Environ Microbiol 62:3026–3029
    [Google Scholar]
  39. Magallon S., Crane P. R., Herendeen P. S. 1999; Phylogenetic pattern, diversity, and diversification of eudicots. Ann Mo Bot Gard 86:297–372 [View Article]
    [Google Scholar]
  40. Meier-Kolthoff J. P., Göker M., Spröer C., Klenk H.-P. 2013a; When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 195:413–418 [View Article]
    [Google Scholar]
  41. Meier-Kolthoff J. P., Auch A. F., Klenk H.-P., Göker M. 2013b; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60 [View Article]
    [Google Scholar]
  42. Meier-Kolthoff J. P., Hahnke R. L., Petersen J., Scheuner C., Michael V., Fiebig A., Rohde C., Rohde M., Fartmann B. et al. 2014a; Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 9:2 [View Article][PubMed]
    [Google Scholar]
  43. Meier-Kolthoff J. P., Auch A. F., Klenk H.-P., Göker M. 2014b; Highly parallelized inference of large genome-based phylogenies. Concurr Comput Pr Exper 26:1715–1729 [View Article]
    [Google Scholar]
  44. Meier-Kolthoff J. P., Klenk H. P., Göker M. 2014c; Taxonomic use of DNA G+C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol 64:352–356 [View Article][PubMed]
    [Google Scholar]
  45. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  46. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  47. Mizra B., Welsh A., Rieder J. P., Paschke M. W., Hahn D. 2009; Diversity of frankiae in soils from five continents. Syst Appl Microbiol 32:558–570 [CrossRef]
    [Google Scholar]
  48. Murry M. A., Fontaine M. S., Torrey J. G. 1984; Growth kinetics and nitrogenase induction in Frankia sp. HFPArI 3 grown in batch culture. Plant Soil 78:61–78 [View Article]
    [Google Scholar]
  49. Murry M. A., Zhang D., Schneider M., Bruijn D. F. J. 1995; Use of repetitive sequences and the polymerase chain reaction to fingerprint the genomes of Frankia isolates. Symbiosis 19:223–240
    [Google Scholar]
  50. Newcomb W., Callaham D., Torrey J. G., Peterson R. L. 1979; Morphogenesis and fine structure of the actinomycetous endophyte of nitrogen-fixing root nodules of Comptonia peregrina . Bot Gaz 140:S22–S34 [View Article]
    [Google Scholar]
  51. Normand P., Lalonde M. 1982; Evaluation of Frankia strains isolated from provenances of two Alnus species. Can J Microbiol 28:1133–1142 [View Article]
    [Google Scholar]
  52. Normand P., Benson D. R. 2012; Order XVI Frankiales . In Bergey’s Manual of Systematic Bacteriology pp. 508–510 Edited by Goodfellow M., Kämpfer P., Busse H. J., Trujillo M. E., Ludwig W., Suzuki K. I., Whitman W. B. New York: Springer;
    [Google Scholar]
  53. Normand P., Orso S., Cournoyer B., Jeannin P., Chapelon C., Dawson J., Evtushenko L., Misra A. K. 1996; Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae . Int J Syst Bacteriol 46:1–9 [View Article]
    [Google Scholar]
  54. Normand P., Lapierre P., Tisa L. S., Gogarten J. P., Alloisio N., Bagnarol E., Bassi C. A., Berry A. M., Bickhart D. M. et al. 2007; Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15 [View Article]
    [Google Scholar]
  55. Nouioui I., Ghodhbane-Gtari F., Beauchemin N. J., Tisa L. S., Gtari M. 2011; Phylogeny of members of the Frankia genus based on gyrB, nifH and glnII sequences. Antonie van Leeuwenhoek 100:579–587 [View Article]
    [Google Scholar]
  56. Nouioui I., Beauchemin N., Cantor M. N., Chen A., Detter J. C., Furnholm T., Ghodhbane-Gtari F., Goodwin L., Gtari M. et al. 2013; Draft genome sequence of Frankia sp. strain BMG5.12, a nitrogen actinobacterium isolated from Tunisian soils. Genome Announc 1:e00468-13 [View Article][PubMed]
    [Google Scholar]
  57. Parker C. T., Tindall B. J., Garrity G. M. 2015; International code of nomenclature of prokaryotes. Prokaryotic code (2008 revision). Int J Syst Evol Micorbiol (in Press)
    [Google Scholar]
  58. Pattengale N. D., Alipour M., Bininda-Emonds O. R. P., Moret B. M. E., Stamatakis A. 2010; How many bootstrap replicates are necessary?. J Comput Biol 17:337–354 [View Article][PubMed]
    [Google Scholar]
  59. Sasser M. 1990 Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical note 101. DE: MIDI;
    [Google Scholar]
  60. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  61. Sen A., Daubin V., Abrouk D., Gifford I., Berry A. M., Normand P. 2014; Phylogeny of the class actinobacteria revisited in the light of complete genomes. The orders Frankiales and Micrococcales should be split into coherent entities: Proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. nov. Int J Syst Evol Microbiol 64:3821–3832 [View Article][PubMed]
    [Google Scholar]
  62. Skerman V. B. D., McGowan V., Sneath P. H. A. 1980; Approved lists of bacterial names. Int J Syst Evol Microbiol 30:225–420 [View Article]
    [Google Scholar]
  63. Simon L., Jabaji-Hare S., Bousquet J., Lalonde M. 1989; Confirmation of Frankia species using cellular fatty acids analysis. Syst Appl Microbiol 11:229–235 [View Article]
    [Google Scholar]
  64. Simonet P., Normand P., Hirsch A. M., Akkermans A. D. L. 1990; The genetics of the Frankia actinorhizal symbiosis. In The Molecular Biology of Symbiotic Nitrogen Fixation pp. 70–109 Edited by Gresshoff P. M. Boca Raton: CRC Press;
    [Google Scholar]
  65. Skipski V. P., Peterson R. F., Barclay M. 1964; Quantitative analysis of phospholipids by thin-layer chromatography. Biochem J 90:374–378 [View Article][PubMed]
    [Google Scholar]
  66. Stahl E., Kaltenbach U. 1961; Dünnschicht-Chromatographie. VI. Mitteilung spurenanalyse von zuckergemischen auf kieselgur G-Schichten. J Chromatogr 5:351–355 [CrossRef]
    [Google Scholar]
  67. Stamatakis A. 2014; RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313 [View Article]
    [Google Scholar]
  68. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin layer chromatography. J Appl Microbiol 28:226–231
    [Google Scholar]
  69. Swofford D. L. 2002; PAUP*: Phylogenetic analysis using parsimony (*and Other Methods), Version 4.0 b10. Sinauer Associates, Sunderland
  70. Tindall B. J. 1990; A comparative study of the lipid composition of Halobacteriumsaccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  71. Torrey J. G., Tjepkema J. D. 1979; Symbiotic nitrogen fixation in actinomycete nodulated plants. Bot Gaz 140:i–ii [View Article]
    [Google Scholar]
  72. Vaas L. A. I., Sikorski J., Hofner B., Fiebig A., Buddruhs N., Klenk H.-P., Göker M. 2013; Opm: an R package for analysing OmniLog(R) phenotype microarray data. Bioinformatics 29:1823–1824 [View Article][PubMed]
    [Google Scholar]
  73. Von Tubeuf K. 1895 Pflanzenkrankheiten durch Kryptogame Parasiten verursacht pp. 1–599 Berlin: Verlag J Springer;
    [Google Scholar]
  74. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  75. Wolters D. J., Van Dijk C., Zoetendal E. G., Akkermans A. D. L. 1997; Phylogenetic characterization of ineffective Frankia in Alnus glutinosa (L.) Gaertn. Nodules from wetland soil inoculants. Mol Ecol 6:971–981 [View Article]
    [Google Scholar]
  76. Woronin M. S. 1866; Über die bei der Schwarzerle (Alnus glutinosa) und bei der gewöhnlichen Garten-Lupine (Lupinus mutabilis) auftretenden Wurzelanschwellungen. Mem Acad Imp Sci St Petersbourg VII Series 10:1–13
    [Google Scholar]
  77. Zhang X., Benson D. R. 1992; Utilization of amino acids by Frankia sp. strain CpI1. Arch Microbiol 158:256–261 [View Article]
    [Google Scholar]
  78. Zhang Z., Lopez M. F., Torrey J. G. 1984; A comparison of cultural characteristics and infectivity of Frankia isolates from root nodules of Casuarina species. Plant Soil 78:79–90 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001496
Loading
/content/journal/ijsem/10.1099/ijsem.0.001496
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed