1887

Abstract

Two Gram-stain-negative, aerobic, motile by a single polar flagellum and rod-shaped strains, designated SCS-49 and SCS-111, were isolated from seawater of the South China Sea. The two strains grew at 4–35 °C, with 0.5–7.5 % (w/v) NaCl and at pH 6.5–9.0 and were able to reduce nitrate. Q-8 was the sole ubiquinone. The major fatty acids of the two strains were C, C 7 and summed feature 3 (C 7 and/or C 6). The polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phospoglycolipid, three unidentified glycolipids, five unidentified phospholipids and two to three unidentified lipids. The isolates formed a stable clade with and based on phylogenetic analysis of 16S rRNA gene sequences. Strains SCS-49 and SCS-111 exhibited 16S rRNA gene sequence similarity values of 97.2 and 96.0 % with respect to the type strains of and , respectively. The average nucleotide diversity and DNA–DNA hybridization values between strain SCS-49 and KCTC 42131 were 71.4 and 25.1 %, respectively and the values between strain SCS-49 and SCS-111 were 99.9 and 99.2 %, respectively. Based upon the phenotypic, chemotaxonomic and genetic data, strains SCS-49 and SCS-111 represent a novel species in the genus , for which the name sp. nov. is proposed. The type strain is SCS-49 (=CGMCC 1.15425=KCTC 52155=MCCC 1K03186).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001489
2016-12-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5155.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001489&mimeType=html&fmt=ahah

References

  1. Baumann P., Baumann L., Mandel M.. 1971; Taxonomy of Marine Bacteria: the Genus Beneckea. J Bacteriol107:268–294[PubMed]
    [Google Scholar]
  2. Delcher A. L., Bratke K. A., Powers E. C., Salzberg S. L.. 2007; Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics23:673–679 [CrossRef][PubMed]
    [Google Scholar]
  3. Dong X.-Z., Cai M.-Y.. 2001; Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation);
    [Google Scholar]
  4. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  5. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  6. Kamekura M., Kates M.. 1988; Lipids of halophilic archaebacteria. In Halophilic Bacteria II pp.25–54 Rodriguez-Valera F.. Boca Raton: CRC Press;
    [Google Scholar]
  7. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  8. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim M., Oh H.-S., Park S.-C., Chun J.. 2014; Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  10. Lagesen K., Hallin P., Rødland E. A., Staerfeldt H.-H., Rognes T., Ussery D. W.. 2007; RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res35:3100–3108 [CrossRef][PubMed]
    [Google Scholar]
  11. Lee I., Kim Y. O., Park S.-C., Chun J.. 2016; OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol66:1100–1103 [CrossRef]
    [Google Scholar]
  12. Leifson E.. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol85:1183–1184
    [Google Scholar]
  13. Meier-Kolthoff J. P., Auch A. F., Klenk H.-P., Göker M.. 2013; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14:60 [CrossRef][PubMed]
    [Google Scholar]
  14. Overbeek R., Olson R., Pusch G. D., Olsen G. J., Davis J. J., Disz T., Edwards R. A., Gerdes S., Parrello B. et al. 2014; The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res42:D206–D214 [CrossRef][PubMed]
    [Google Scholar]
  15. Park S., Jung Y.-T., Park J.-M., Yoon J.-H.. 2014; Pseudohongiella acticola sp. nov., a novel gammaproteobacterium isolated from seawater, and emended description of the genus Pseudohongiella. Antonie van Leeuwenhoek106:809–815 [CrossRef][PubMed]
    [Google Scholar]
  16. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  17. Simpson J. T., Wong K., Jackman S. D., Schein J. E., Jones S. J., Birol I.. 2009; ABySS: a parallel assembler for short read sequence data. Genome Res19:1117–1123 [CrossRef][PubMed]
    [Google Scholar]
  18. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  19. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  20. Tindall B. J., Sikorski J., Smibert R. M., Kreig N. R.. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd edn. pp.330–393 Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R.. Washington, DC: ASM Press;
    [Google Scholar]
  21. Wang G., Fan J., Wu H., Zhang X., Li G., Zhang H., Yang X., Ye F., Xiang W., Li X.. 2013; Nonhongiella spirulinensis gen. nov., sp. nov., a bacterium isolated from a cultivation pond of Spirulina platensis in Sanya, China. Antonie van Leeuwenhoek104:933–939 [CrossRef][PubMed]
    [Google Scholar]
  22. Wang G., Fan J., Wu H., Zhang X., Li G., Zhang H., Yang X., Ye F., Xiang W., Li X.. 2014; Erratum to: Nonhongiella spirulinensis gen. nov., sp. nov., a bacterium isolated from a cultivation pond of Spirulina platensis in Sanya, China. Antonie van Leeuwenhoek106:591–592 [CrossRef]
    [Google Scholar]
  23. Xu L., Huo Y.-Y., Li Z.-Y., Wang C.-S., Oren A., Xu X.-W.. 2015; Chryseobacterium profundimaris sp. nov., a new member of the family Flavobacteriaceae isolated from deep-sea sediment. Antonie van Leeuwenhoek107:979–989 [CrossRef][PubMed]
    [Google Scholar]
  24. Xu X.-W., Wu Y.-H., Wang C.-S., Yang J.-Y., Oren A., Wu M.. 2008; Marinobacter pelagius sp. nov., a moderately halophilic bacterium. Int J Syst Evol Microbiol58:637–640 [CrossRef][PubMed]
    [Google Scholar]
  25. Xu X.-W., Huo Y.-Y., Bai X.-D., Wang C.-S., Oren A., Li S.-Y., Wu M.. 2011; Kordiimonas lacus sp. nov., isolated from a ballast water tank, and emended description of the genus Kordiimonas. Int J Syst Evol Microbiol61:422–426 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001489
Loading
/content/journal/ijsem/10.1099/ijsem.0.001489
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error