1887

Abstract

Understanding of the phylogeny and interrelationships of the genera within the order ‘’ has proven difficult using the 16S rRNA gene and other single-gene or limited multi-gene approaches. In this work, we have completed comprehensive comparative genomic analyses of the members of the order ‘’ which includes phylogenetic reconstructions based on 1548 core proteins, 53 ribosomal proteins and four multilocus sequence analysis proteins, as well as examining the overall genome similarity amongst the members of this order. The results of these analyses all support the existence of seven distinct monophyletic groups of genera within the order ‘’. In parallel, our analyses of protein sequences from the ‘’ genomes have identified numerous molecular characteristics in the forms of conserved signature insertions/deletions, which are specifically shared by the members of the identified clades and independently support their monophyly and distinctness. Many of these groupings, either in part or in whole, have been recognized in previous evolutionary studies, but have not been consistently resolved as monophyletic entities in 16S rRNA gene trees. The work presented here represents the first comprehensive, genome-scale taxonomic analysis of the entirety of the order ‘’. On the basis of phylogenetic analyses and the numerous identified conserved molecular characteristics, which clearly distinguish members of the order ‘’ and the seven reported clades within this order, a proposal is made here for the order ord. nov. which consists of seven families: fam. nov., fam. nov., fam. nov., fam. nov., fam. nov., and fam. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001485
2016-12-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5575.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001485&mimeType=html&fmt=ahah

References

  1. Ahmod N. Z., Gupta R. S., Shah H. N.. 2011; Identification of a Bacillus anthracis specific indel in the yeaC gene and development of a rapid pyrosequencing assay for distinguishing B. anthracis from the B. cereus group. J Microbiol Methods87:278–285 [CrossRef][PubMed]
    [Google Scholar]
  2. Aizenberg-Gershtein Y., Halpern M., Samuni-Blank M., Laviad S.. 2016; Izhakiella capsodis gen. nov., sp. nov., in the family Enterobacteriaceae, isolated from the mirid bug Capsodes infuscatus. Int J Syst Evol Microbiol66:1364–1370 [CrossRef]
    [Google Scholar]
  3. Aksoy S.. 1995; Wigglesworthia gen. nov. and Wigglesworthia glossinidia sp. nov., taxa consisting of the mycetocyte-associated, primary endosymbionts of tsetse flies. Int J Syst Evol Microbiol45:848–851
    [Google Scholar]
  4. Aldová E., Hausner O., Brenner D. J., Kocmoud Z., Schindler J., Potužníková B., Petráš P.. 1988; Pragia fontium gen. nov., sp. nov. of the family Enterobacteriaceae, isolated from water. Int J Syst Evol Microbiol38:183–189
    [Google Scholar]
  5. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and PSI-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[PubMed][CrossRef]
    [Google Scholar]
  6. Auch A. F., von Jan M., Klenk H. P., Göker M.. 2010; Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  7. Bergsten J.. 2005; A review of long-branch attraction. Cladistics21:163–193[CrossRef]
    [Google Scholar]
  8. Bizio B.. 1823; Lettera di bartolomeo bizio al chiarissimo canonico angelo Bbllani sopra il fenomeno della polenta porporina. Biblioteca Italiana O Sia Giornale Di Letteratura, Scienze E Arti30:275–295
    [Google Scholar]
  9. Blattner F. R., Plunkett G., Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Rode C. K., Rode C. K. et al. 1997; The complete genome sequence of Escherichia coli K-12. Science277:1453–1462[PubMed][CrossRef]
    [Google Scholar]
  10. Boemare N., Akhurst R.. 2006; The genera Photorhabdus Xenorhabdus. In The Prokaryotes , pp.451–494 New york, NY: Springer;[CrossRef]
    [Google Scholar]
  11. Boemare N. E., Akhurst R. J., Mourant R. G.. 1993; DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. Int J Syst Bacteriol43:249–255 [CrossRef]
    [Google Scholar]
  12. Bonn W. G., van der Zwet T.. 2000; Distribution and economic importance of fire blight. In Fire Blight: the Disease and its Causative Agent, Erwinia Amylovora pp.37–53 Edited by Vanneste J. L.. Wallingford, UK: CABI;[CrossRef]
    [Google Scholar]
  13. Brady C., Cleenwerck I., Venter S., Vancanneyt M., Swings J., Coutinho T.. 2008; Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst Appl Microbiol31:447–460 [CrossRef][PubMed]
    [Google Scholar]
  14. Brady C., Denman S., Kirk S., Venter S., Rodríguez-Palenzuela P., Coutinho T.. 2010a; Description of Gibbsiella quercinecans gen. nov., sp. nov., associated with Acute Oak Decline. Syst Appl Microbiol33:444–450[CrossRef]
    [Google Scholar]
  15. Brady C. L., Cleenwerck I., Venter S. N., Engelbeen K., De Vos P., Coutinho T. A.. 2010b; Emended description of the genus Pantoea, description of four species from human clinical samples, Pantoea septica sp. nov., Pantoea eucrina sp. nov., Pantoea brenneri sp. nov. and Pantoea conspicua sp. nov., and transfer of Pectobacterium cypripedii (Hori 1911) Brenner, et al. 1973 emend. Hauben, et al. 1998 to the genus as Pantoea cypripedii comb. nov. Int J Syst Evol Microbiol60:2430–2440[CrossRef]
    [Google Scholar]
  16. Brady C. L., Cleenwerck I., Denman S., Venter S. N., Rodríguez-Palenzuela P., Coutinho T. A., De Vos P.. 2012; Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben, et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., descriptions of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. berica subsp. nov. and Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Brenneria, reclassification of Dickeya dieffenbachiae as Dickeya dadantii subsp. dieffenbachiae comb. nov., and emendation of the description of Dickeya dadantii. Int J Syst Evol Microbiol62:1592–1602[CrossRef]
    [Google Scholar]
  17. Brady C., Cleenwerck I., Venter S., Coutinho T., De Vos P.. 2013; Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuraliscomb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosak onia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst Appl Microbiol36:309–319[CrossRef]
    [Google Scholar]
  18. Brady C., Hunter G., Kirk S., Arnold D., Denman S.. 2014a; Description of Brenneria roseae sp. nov. and two subspecies, Brenneria roseae subspecies roseae ssp. nov and Brenneria roseae subspecies americana ssp. nov. isolated from symptomatic oak. Syst Appl Microbiol37:396–401[CrossRef]
    [Google Scholar]
  19. Brady C., Hunter G., Kirk S., Arnold D., Denman S.. 2014b; Rahnella victoriana sp. nov., Rahnella bruchi sp. nov., Rahnella woolbedingensis sp. nov., classification of Rahnella genomospecies 2 and 3 as Rahnella variigena sp. nov. and Rahnella inusitata sp. nov., respectively and emended description of the genus Rahnella. Syst Appl Microbiol37:545–552[CrossRef]
    [Google Scholar]
  20. Brenner D. J.. 1983; Opposition to the proposal to replace the family name Enterobacteriaceae†. Int J Syst Evol Microbiol33:892–895
    [Google Scholar]
  21. Brenner D. J., Farmer III J. J.. 2005; Family I. Enterobacteriaceae. In Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 2, pp.587–607 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M., Boone D. R., Vos P., Goodfellow M., Rainey F. A., Schleifer K.-H.. New York, NY: Springer;
    [Google Scholar]
  22. Brzuszkiewicz E., Waschkowitz T., Wiezer A., Daniel R.. 2012; Complete genome sequence of the B12-producing Shimwellia blattae strain DSM 4481, isolated from a cockroach. J Bacteriol194:4436 [CrossRef][PubMed]
    [Google Scholar]
  23. Campbell C., Adeolu M., Gupta R. S.. 2015; Genome-based taxonomic framework for the class Negativicutes: division of the class Negativicutes into the orders Selenomonadales emend., Acidaminococcales ord. nov. and Veillonellales ord. nov. Int J Syst Evol Microbiol65:3203–3215 [CrossRef][PubMed]
    [Google Scholar]
  24. Castellani A., Chambers A. J.. 1919; Manual of Tropical Medicine, 3rd edn. New York: William, Wood and Co;
    [Google Scholar]
  25. Castresana J.. 2000; Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol17:540–552[PubMed][CrossRef]
    [Google Scholar]
  26. Chaudhuri R. R., Henderson I. R.. 2012; The evolution of the Escherichia coli phylogeny. Infect, Genet Evol12:214–226[CrossRef]
    [Google Scholar]
  27. Ciccarelli F. D., Doerks T., von Mering C., Creevey C. J., Snel B., Bork P.. 2006; Toward automatic reconstruction of a highly resolved tree of life. Science311:1283–1287 [CrossRef][PubMed]
    [Google Scholar]
  28. Clifford R. J., Hang J., Riley M. C., Onmus-Leone F., Kuschner R. A., Lesho E. P., Waterman P. E.. 2012; Complete genome sequence of Providencia stuartii clinical isolate MRSN 2154. J Bacteriol194:3736–3737 [CrossRef][PubMed]
    [Google Scholar]
  29. Coutinho T. A., Venter S. N.. 2009; Pantoea ananatis: an unconventional plant pathogen. Mol Plant Pathol10:325–335 [CrossRef][PubMed]
    [Google Scholar]
  30. Croxen M. A., Finlay B. B.. 2010; Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol8:26–38 [CrossRef][PubMed]
    [Google Scholar]
  31. Dagan T., Martin W.. 2006; The tree of one percent. Genome Biol7:118 [CrossRef][PubMed]
    [Google Scholar]
  32. Dale C., Maudlin I.. 1999; Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int J Syst Evol Microbiol49:267–275
    [Google Scholar]
  33. Dauga C.. 2002; Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies. Int J Syst Evol Microbiol52:531–547 [CrossRef][PubMed]
    [Google Scholar]
  34. Drancourt M., Bollet C., Carta A., Rousselier P.. 2001; Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica comb. nov., Raoultella terrigena comb. nov. and Raoultella planticola comb. nov. Int J Syst Evol Microbiol51:925–932 [CrossRef][PubMed]
    [Google Scholar]
  35. Eddy S. R.. 2011; Accelerated Profile HMM Searches. PLoS Comput Biol7:e1002195 [CrossRef][PubMed]
    [Google Scholar]
  36. Edgar R. C.. 2010; Search and clustering orders of magnitude faster than blast. Bioinformatics26:2460–2461 [CrossRef][PubMed]
    [Google Scholar]
  37. Ee R., Madhaiyan M., Ji L., Lim Y. L., Nor N. M., Tee K. K., Chen J. W., Yin W. F.. 2016; Chania multitudinisentens gen. nov., sp. nov., an N-acyl-homoserine-lactone-producing bacterium in the family Enterobacteriaceae isolated from landfill site soil. Int J Syst Evol Microbiol66:2297–2304 [CrossRef][PubMed]
    [Google Scholar]
  38. Eppinger M., Worsham P. L., Nikolich M. P., Riley D. R., Sebastian Y., Mou S., Achtman M., Lindler L. E., Ravel J.. 2010; Genome sequence of the deep-rooted Yersinia pestis strain Angola reveals new insights into the evolution and pangenome of the plague bacterium. J Bacteriol192:1685–1699 [CrossRef][PubMed]
    [Google Scholar]
  39. Ewing W.. 1962; The tribe Proteae: its nomenclature and taxonomy. Int J Syst Evol Microbiol12:93–102
    [Google Scholar]
  40. Ewing W., McWhorter A., Escobar M., Lubin A.. 1965; Edwardsiella, a new genus of Enterobacteriaceae based on a new species, E. tarda. Int J Syst Evol Microbiol15:33–38
    [Google Scholar]
  41. Farmer J. J., Fanning G. R., Huntley-Carter G. P., Holmes B., Hickman F. W., Richard C., Brenner D. J.. 1981; Kluyvera, a new (redefined) genus in the family Enterobacteriaceae: identification of Kluyvera ascorbata sp. nov. and Kluyvera cryocrescens sp. nov. in clinical specimens. J Clin Microbiol13:919–933[PubMed]
    [Google Scholar]
  42. Ferragut C., Izard D., Gavini F., Lefebvre B., Leclerc H.. 1981; Buttiauxella, a new genus of the family Enterobacteraceae. Zentralblatt Für Bakteriologie Mikrobiologie Und Hygiene: I. Abt. Originale C: Allgemeine, Angewandte Und Ökologische Mikrobiologie2:33–44 [CrossRef]
    [Google Scholar]
  43. Finn R. D., Coggill P., Eberhardt R. Y., Eddy S. R., Mistry J., Mitchell A. L., Potter S. C., Punta M., Qureshi M. et al. 2016; The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res44:D279–D285 [CrossRef][PubMed]
    [Google Scholar]
  44. Forst S., Dowds B., Boemare N., Stackebrandt E.. 1997; Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol51:47–72 [CrossRef][PubMed]
    [Google Scholar]
  45. Francino M. P., Santos S. R., Ochman H.. 2006; Phylogenetic relationships of bacteria with special reference to endosymbionts and enteric species. In The Prokaryotes , pp.41–59 Springer;[CrossRef]
    [Google Scholar]
  46. Fukushima M., Kakinuma K., Kawaguchi R.. 2002; Phylogenetic analysis of Salmonella, Shigella, and Escherichia coli strains on the basis of the gyrB gene sequence. J Clin Microbiol40:2779–2785[PubMed][CrossRef]
    [Google Scholar]
  47. Fulton M.. 1943; The identity of Bacterium Columbensis Castellani. J Bacteriol46:79[PubMed]
    [Google Scholar]
  48. Gao B., Mohan R., Gupta R. S.. 2009; Phylogenomics and protein signatures elucidating the evolutionary relationships among the Gammaproteobacteria. Int J Syst Evol Microbiol59:234–247 [CrossRef][PubMed]
    [Google Scholar]
  49. Gevers D., Cohan F. M., Lawrence J. G., Spratt B. G., Coenye T., Feil E. J., Stackebrandt E., Van de Peer Y., Vandamme P. et al. 2005; Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol3:733–739 [CrossRef][PubMed]
    [Google Scholar]
  50. Gherna R., Werren J., Weisburg W., Cote R., Woeste C., Mandelco L., Brenner D.. 1991; Arsenophonus nasoniae gen. nov., sp. nov., the causative agent of the son-killer trait in the parasitic wasp Nasonia vitripennis. Int J Syst Bacteriol41:563–565[CrossRef]
    [Google Scholar]
  51. Giammanco G. M., Grimont P. A., Grimont F., Lefevre M., Giammanco G., Pignato S.. 2011; Phylogenetic analysis of the genera Proteus, Morganella and Providencia by comparison of rpoB gene sequences of type and clinical strains suggests the reclassification of Proteus myxofaciens in a new genus, Cosenzaea gen. nov., as Cosenzaea myxofaciens comb. nov. Int J Syst Evol Microbiol61:1638–1644 [CrossRef][PubMed]
    [Google Scholar]
  52. Glaeser S. P., Kämpfer P.. 2015; Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol38:237–245 [CrossRef][PubMed]
    [Google Scholar]
  53. Goodrich-Blair H., Clarke D. J.. 2007; Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol Microbiol64:260–268 [CrossRef][PubMed]
    [Google Scholar]
  54. Gordienko E. N., Kazanov M. D., Gelfand M. S.. 2013; Evolution of pan-genomes of Escherichia coli, Shigella spp., and Salmonella enterica. J Bacteriol195:2786–2792 [CrossRef][PubMed]
    [Google Scholar]
  55. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. 2007; DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  56. Grimont P. A., Grimont F., Farmer III J., Asbury M. A.. 1981; Cedecea davisae gen. nov., sp. nov. and Cedecea lapagei sp. nov., new Enterobacteriaceae from clinical specimens. Int J Syst Evol Microbiol31:317–326
    [Google Scholar]
  57. Grimont P., Farmer J., Grimont F., Asbury M., Brenner D., Deval C.. 1983; Ewingella americana gen. nov., sp. nov., a new Enterobacteriaceae isolated from clinical specimens. In Annales De l'Institut Pasteur/Microbiologie pp.39–52 Paris: Elsevier;
    [Google Scholar]
  58. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O.. 2010; New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol59:307–321 [CrossRef][PubMed]
    [Google Scholar]
  59. Gupta R. S.. 2000; The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev24:367–402[PubMed][CrossRef]
    [Google Scholar]
  60. Gupta R. S.. 2014; Identification of conserved indels that are useful for classification and evolutionary studies. In Methods in Microbiologyvol. 41 pp.153–182 Oxford, UK: Academic Press;
    [Google Scholar]
  61. Gupta R. S.. 2016; Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. FEMS Microbiol Rev40:520–553 [CrossRef][PubMed]
    [Google Scholar]
  62. Gupta R. S., Naushad S., Baker S.. 2015a; Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int J Syst Evol Microbiol65:1050–1069[CrossRef]
    [Google Scholar]
  63. Gupta R. S., Naushad S., Chokshi C., Griffiths E., Adeolu M.. 2015b; A phylogenomic and molecular markers based analysis of the phylum Chlamydiae: proposal to divide the class Chlamydiia into two orders, Chlamydiales and Parachlamydiales ord. nov., and emended description of the class Chlamydiia. Antonie van Leeuwenhoek108:765–781[CrossRef]
    [Google Scholar]
  64. Gupta R. S., Naushad S., Fabros R., Adeolu M.. 2016; A phylogenomic reappraisal of family-level divisions within the class Halobacteria: proposal to divide the order Halobacteriales into the families Halobacteriaceae, Haloarculaceae fam. nov and Halococcaceae fam. nov., and the order Haloferacales into the families, Haloferacaceae and Halorubraceae fam nov,. Antonie van Leeuwenhoek109:565–587[CrossRef]
    [Google Scholar]
  65. Halpern M., Fridman S., Atamna-Ismaeel N., Izhaki I.. 2013a; Rosenbergiella nectarea gen. nov., sp. nov., in the family Enterobacteriaceae, isolated from floral nectar. Int J Syst Evol Microbiol63:4259–4265[CrossRef]
    [Google Scholar]
  66. Halpern M., Fridman S., Aizenberg-Gershtein Y., Izhaki I.. 2013b; Transfer of Pseudomonas flectens Johnson 1956 to Phaseolibacter gen. nov., in the family Enterobacteriaceae, as Phaseolibacter flectens gen. nov., comb. nov. Int J Syst Evol Microbiol63:268–273[CrossRef]
    [Google Scholar]
  67. Hata H., Natori T., Mizuno T., Kanazawa I., Eldesouky I., Hayashi M., Miyata M., Fukunaga H., Ohji S. et al. 2016; Phylogenetics of family Enterobacteriaceae and proposal to reclassify Escherichia hermannii and Salmonella subterranea as Atlantibacter hermannii and Atlantibacter subterranea gen. nov., comb. nov. Microbiol Immunol60:303–311 [CrossRef][PubMed]
    [Google Scholar]
  68. Hauben L., Moore E. R., Vauterin L., Steenackers M., Mergaert J., Verdonck L., Swings J.. 1998; Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst Appl Microbiol21:384–397 [CrossRef][PubMed]
    [Google Scholar]
  69. Hauser G.. 1885; Über Fäulnissbacterien und deren Beziehungen zur Septicämie vol. 1250 FCW Vogel;[CrossRef]
    [Google Scholar]
  70. Herbeck J. T., Degnan P. H., Wernegreen J. J.. 2005; Nonhomogeneous model of sequence evolution indicates independent origins of primary endosymbionts within the enterobacteriales (gamma-Proteobacteria). Mol Biol Evol22:520–532 [CrossRef][PubMed]
    [Google Scholar]
  71. Hickman-Brenner F. W., Huntley-Carter G. P., Saitoh Y., Steigerwalt A. G., Farmer J. J., Brenner D. J.. 1984; A new genus and species of Enterobacteriaceae found in human stool specimens. J Clin Microbiol19:460–463
    [Google Scholar]
  72. Hickman-Brenner F. W., Vohra M. P., Huntley-Carter G. P., Fanning G. R., Lowery V. A., Brenner D. J., Farmer J. J.. 1985; Leminorella, a new genus of Enterobacteriaceae: identification of Leminorella grimontii sp. nov. and Leminorella richardii sp. nov. found in clinical specimens. J Clin Microbiol21:234–239[PubMed]
    [Google Scholar]
  73. Hollis D. G., Hickman F. W., Fanning G. R., Farmer J. J., Weaver R. E., Brenner D. J.. 1981; Tatumella ptyseos gen. nov., sp. nov., a member of the family Enterobacteriaceae found in clinical specimens. J Clin Microbiol14:79–88[PubMed]
    [Google Scholar]
  74. Husník F., Chrudimský T., Hypša V.. 2011; Multiple origins of endosymbiosis within the Enterobacteriaceae (γ-Proteobacteria): convergence of complex phylogenetic approaches. BMC Biol9:87 [CrossRef][PubMed]
    [Google Scholar]
  75. Huys G., Cnockaert M., Abbott S. L., Janda J. M., Vandamme P.. 2010; Hafnia paralvei sp. nov., formerly known as Hafnia alvei hybridization group 2. Int J Syst Evol Microbiol60:1725–1728 [CrossRef][PubMed]
    [Google Scholar]
  76. Imhoff J. F.. 2005; Order XIII. ‘Enterobacteriales’. In Bergey’s Manual of Systematic Bacteriology, 2nd edn.vol. 2 pp.587 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M., Boone D. R., Vos P., Goodfellow M., Rainey F. A., Schleifer K.-H.. New York, NY: Springer;[CrossRef]
    [Google Scholar]
  77. Iversen C., Mullane N., McCardell B., Tall B. D., Lehner A., Fanning S., Stephan R., Joosten H.. 2008; Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int J Syst Evol Microbiol58:1442–1447[CrossRef]
    [Google Scholar]
  78. Izard D., Gavini F., Trinel P., Leclere H.. 1978; Rahnella aquatilis, a new member of the Enterobacteriaceae. Ann Microbiol130:163–177
    [Google Scholar]
  79. Janda J.. 2005; Genus XXVII. Plesiomonas. In Bergey's Manual of Systematic Bacteriology, 2nd edn.vol. 2 pp.740–744 Edited by Brenner D. J., Krieg N. R., Garrity G. M., Staley J. T.. New York: Springer;
    [Google Scholar]
  80. Janda J. M.. 2006; New members of the family Enterobacteriaceae. In The Prokaryotes , pp.5–40 New York, NY: Springer;[CrossRef]
    [Google Scholar]
  81. Janda J. M., Abbott S. L.. 1993; Infections associated with the genus Edwardsiella: the role of Edwardsiella tarda in human disease. Clin Infect Dis17:742–748[PubMed][CrossRef]
    [Google Scholar]
  82. Janda J. M., Abbott S. L.. 2006; The genus Hafnia: from soup to nuts. Clin Microbiol Rev19:28 [CrossRef][PubMed]
    [Google Scholar]
  83. Janda J. M., Abbott S. L., McIver C. J.. 2016; Plesiomonas shigelloides Revisited. Clin Microbiol Rev29:349–374 [CrossRef][PubMed]
    [Google Scholar]
  84. Jeanmougin F., Thompson J. D., Gouy M., Higgins D. G., Gibson T. J.. 1998; Multiple sequence alignment with clustal x. Trends Biochem Sci23:403 [CrossRef][PubMed]
    [Google Scholar]
  85. Jones A. L.. 2012; The future of taxonomy. In Adv Appl Microbiol, 1st edn.vol. 80 pp.23–35 Edited by Gadd G. M., Sariaslani S.. San Diego: Academic Press Inc;
    [Google Scholar]
  86. Judicial Commission of the International Committee on Systematic Bacteriology 1981; Present Standing of the Family Name Enterobacteriaceae Rahn 1937. Int J Syst Bacteriol31:104[CrossRef]
    [Google Scholar]
  87. Kämpfer P., Glaeser S. P., Raza M. W., Abbasi S. A., Perry J. D.. 2014; Pseudocitrobacter gen. nov., a novel genus of the Enterobacteriaceae with two new species Pseudocitrobacter faecalis sp. nov., and Pseudocitrobacter anthropi sp. nov, isolated from fecal samples from hospitalized patients in Pakistan. Syst Appl Microbiol37:17–22 [CrossRef][PubMed]
    [Google Scholar]
  88. Koivula T. T., Juvonen R., Haikara A., Suihko M. L.. 2006; Characterization of the brewery spoilage bacterium Obesumbacterium proteus by automated ribotyping and development of PCR methods for its biotype 1. J Appl Microbiol100:398–406 [CrossRef][PubMed]
    [Google Scholar]
  89. Konstantinidis K. T., Tiedje J. M.. 2005; Towards a genome-based taxonomy for prokaryotes. J Bacteriol187:6258–6264 [CrossRef][PubMed]
    [Google Scholar]
  90. Kosako Y., Sakazaki R., Yoshizaki E.. 1984; Yokenella regensburgei gen. nov., sp. nov.: a new genus and species in the family Enterobacteriaceae. Jpn J Med Sci Biol37:117–124[PubMed][CrossRef]
    [Google Scholar]
  91. Lang E., Schumann P., Knapp B. A., Kumar R., Spröer C., Insam H.. 2013; Budvicia diplopodorum sp. nov. and emended description of the genus Budvicia. Int J Syst Evol Microbiol63:260–267 [CrossRef][PubMed]
    [Google Scholar]
  92. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A.. 1992; International Code of Nomenclature of Bacteria: Bacteriological Code, 1990 Revision Washington, DC: ASM Press International Union of Microbiological Societies;
    [Google Scholar]
  93. Le Flèche-Matéos A., Levast M., Lomprez F., Arnoux Y., Andonian C., Perraud M., Vincent V., Ar Gouilh M., Thiberge J. M. et al. 2015; Rouxiella chamberiensis gen. nov., sp. nov., a member of the family Enterobacteriaceae isolated from parenteral nutrition bags. Int J Syst Evol Microbiol65:1812–1818 [CrossRef][PubMed]
    [Google Scholar]
  94. Le S. Q., Gascuel O.. 2008; An improved general amino acid replacement matrix. Mol Biol Evol25:1307–1320 [CrossRef][PubMed]
    [Google Scholar]
  95. Lerat E., Daubin V., Moran N. A.. 2003; From gene trees to organismal phylogeny in prokaryotes: the case of the Proteobacteria. PLoS Biol1:e19 [CrossRef][PubMed]
    [Google Scholar]
  96. Lignieres J.. 1900; Maladies du porc. Bulletin of the Society for Central Medical Veterinarians18:389–431
    [Google Scholar]
  97. Livermore D. M.. 2012; Current epidemiology and growing resistance of gram-negative pathogens. Korean J Intern Med27:128–142 [CrossRef][PubMed]
    [Google Scholar]
  98. Ma B., Hibbing M. E., Kim H. S., Reedy R. M., Yedidia I., Breuer J., Breuer J., Glasner J. D., Perna N. T. et al. 2007; Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and dickeya. Phytopathology97:1150–1163 [CrossRef][PubMed]
    [Google Scholar]
  99. McWhorter A. C., Haddock R. L., Nocon F. A., Steigerwalt A. G., Brenner D. J., Aleksić S., Bockemühl J., Farmer J. J.. 1991; Trabulsiella guamensis, a new genus and species of the family Enterobacteriaceae that resembles Salmonella subgroups 4 and 5. J Clin Microbiol29:1480–1485[PubMed]
    [Google Scholar]
  100. Møller V.. 1954; Distribution of amino acid decarboxylases in Enterobacteriaceae. Acta Pathol Microbiol Scand35:259[PubMed][CrossRef]
    [Google Scholar]
  101. Morelli G., Song Y., Mazzoni C. J., Eppinger M., Roumagnac P., Wagner D. M., Feldkamp M., Kusecek B., Vogler A. J. et al. 2010; Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat Genet42:1140–1143 [CrossRef][PubMed]
    [Google Scholar]
  102. Munson M. A., Baumann P., Kinsey M. G.. 1991; Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyte-associated, primary endosymbionts of aphids. Int J Syst Evol Microbiol41:566–568
    [Google Scholar]
  103. Nataro J. P., Bopp C. A., Fields P. I., Kaper J. B., Strockbine N. A.. 2011; Escherichia, Shigella, and Salmonella. In Manual of Clinical Microbiology, 10th edn. pp.603–626 Edited by Versalovic J., Carroll K. C., Funke G., Jorgensen J. H., Landry M. L., Warnock D. W.. American Society of Microbiology;[CrossRef]
    [Google Scholar]
  104. Naum M., Brown E. W., Mason-Gamer R. J.. 2008; Is 16S rDNA a reliable phylogenetic marker to characterize relationships below the family level in the enterobacteriaceae?. J Mol Evol66:630–642 [CrossRef][PubMed]
    [Google Scholar]
  105. Naum M., Brown E. W., Mason-Gamer R. J.. 2011; Is a robust phylogeny of the enterobacterial plant pathogens attainable?. Cladistics27:80–93[CrossRef]
    [Google Scholar]
  106. Naushad H. S., Gupta R. S.. 2012; Molecular signatures (conserved indels) in protein sequences that are specific for the order Pasteurellales and distinguish two of its main clades. Antonie van Leeuwenhoek101:105–124 [CrossRef][PubMed]
    [Google Scholar]
  107. Naushad H. S., Gupta R. S.. 2013; Phylogenomics and molecular signatures for species from the plant pathogen-containing order xanthomonadales. PLoS One8:e55216 [CrossRef][PubMed]
    [Google Scholar]
  108. Naushad H. S., Lee B., Gupta R. S.. 2014; Conserved signature indels and signature proteins as novel tools for understanding microbial phylogeny and systematics: identification of molecular signatures that are specific for the phytopathogenic genera Dickeya, Pectobacterium and Brenneria. Int J Syst Evol Microbiol64:366–383 [CrossRef][PubMed]
    [Google Scholar]
  109. Naushad S., Adeolu M., Goel N., Khadka B., Al-Dahwi A., Gupta R. S.. 2015a; Phylogenomic and molecular demarcation of the core members of the polyphyletic genera Actinobacillus, Haemophilus Pasteurella. Int J Genomics2015:198560[CrossRef]
    [Google Scholar]
  110. Naushad S., Adeolu M., Wong S., Sohail M., Schellhorn H. E., Gupta R. S.. 2015b; A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie van Leeuwenhoek107:467–485[CrossRef]
    [Google Scholar]
  111. Nielsen-LeRoux C., Gaudriault S., Ramarao N., Lereclus D., Givaudan A.. 2012; How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Curr Opin Microbiol15:220–231 [CrossRef][PubMed]
    [Google Scholar]
  112. Octavia S., Lan R.. 2014; The Family Enterobacteriaceae pp.225–286 The Prokaryotes: Gammaproteobacteria;
    [Google Scholar]
  113. Paradis S., Boissinot M., Paquette N., Bélanger S. D., Martel E. A., Boudreau D. K., Picard F. J., Ouellette M., Roy P. H. et al. 2005; Phylogeny of the Enterobacteriaceae based on genes encoding elongation factor Tu and F-ATPase beta-subunit. Int J Syst Evol Microbiol55:2013–2025 [CrossRef][PubMed]
    [Google Scholar]
  114. Parkhill J., Wren B. W., Thomson N. R., Titball R. W., Holden M. T., Prentice M. B., Sebaihia M., James K. D., Churcher C. et al. 2001; Genome sequence of Yersinia pestis, the causative agent of plague. Nature413:523–527 [CrossRef][PubMed]
    [Google Scholar]
  115. Parte A. C.. 2014; LPSN list of prokaryotic names with standing in nomenclature. Nucleic Acids Res42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  116. Patil V. S., Salunkhe R. C., Patil R. H., Husseneder C., Shouche Y. S., Ramana V. V.. 2015; Enterobacillus tribolii gen. nov., sp. nov., a novel member of the family Enterobacteriaceae, isolated from the gut of a red flour beetle, Tribolium castaneum. Antonie van Leeuwenhoek107:1207–1216[CrossRef]
    [Google Scholar]
  117. Perry R. D., Fetherston J. D.. 1997; Yersinia pestis etiologic agent of plague. Clin Microbiol Rev10:35–66[PubMed]
    [Google Scholar]
  118. Pham H. N., Ohkusu K., Mishima N., Noda M., Monir Shah M., Sun X., Hayashi M., Ezaki T., Shah M. M.. 2007; Phylogeny and species identification of the family Enterobacteriaceae based on dnaJ sequences. Diagn Microbiol Infect Dis58:153–161 [CrossRef][PubMed]
    [Google Scholar]
  119. Philippe H., Zhou Y., Brinkmann H., Rodrigue N., Delsuc F.. 2005; Heterotachy and long-branch attraction in phylogenetics. BMC Evol Biol5: [CrossRef][PubMed]
    [Google Scholar]
  120. Price M. N., Dehal P. S., Arkin A. P.. 2010; FastTree 2 approximately maximum-likelihood trees for large alignments. PLoS One5:e9490 [CrossRef][PubMed]
    [Google Scholar]
  121. Priest F. G., Barker M.. 2010; Gram-negative bacteria associated with brewery yeasts: reclassification of biogroup 2 as Shimwellia pseudoproteus gen. nov., sp. nov., and transfer of Escherichia blattae to Shimwellia blattae comb. nov. Int J Syst Evol Microbiol60:828–833 [CrossRef][PubMed]
    [Google Scholar]
  122. Pritchard L., Humphris S., Saddler G. S., Elphinstone J. G., Pirhonen M., Toth I. K.. 2013; Draft genome sequences of 17 isolates of the plant pathogenic bacterium dickeya. Genome Announc1:e0097800913 [CrossRef][PubMed]
    [Google Scholar]
  123. Qin Q. L., Xie B. B., Zhang X. Y., Chen X. L., Zhou B. C., Zhou J., Oren A., Zhang Y. Z.. 2014; A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol196:2210–2215 [CrossRef][PubMed]
    [Google Scholar]
  124. Rahn O.. 1937; New principles for the classification of bacteria. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg96:273–286
    [Google Scholar]
  125. Rameshkumar N., Lang E., Nair S.. 2010; Mangrovibacter plantisponsor gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from a mangrove-associated wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol60:179–186 [CrossRef][PubMed]
    [Google Scholar]
  126. Roggenkamp A.. 2007; Phylogenetic analysis of enteric species of the family Enterobacteriaceae using the oriC-locus. Syst Appl Microbiol30:180–188 [CrossRef][PubMed]
    [Google Scholar]
  127. Rokas A., Holland P. W.. 2000; Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol15:454–459 [CrossRef][PubMed]
    [Google Scholar]
  128. Rokas A., Williams B. L., King N., Carroll S. B.. 2003; Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature425:798–804 [CrossRef][PubMed]
    [Google Scholar]
  129. Rosselló-Mora R.. 2006; DNA-DNA reassociation methods applied to microbial taxonomy and their critical evaluation. In Molecular Identification, Systematics, and Population Structure of Prokaryotes pp.23–50 Edited by Stackebrandt E.. Springer;[CrossRef]
    [Google Scholar]
  130. Ruimy R., Breittmayer V., Elbaze P., Lafay B., Boussemart O., Gauthier M., Christen R.. 1994; Phylogenetic analysis and assessment of the genera Vibrio, Photobacterium, Aeromonas, and Plesiomonas deduced from small-subunit rRNA sequences. Int J Syst Evol Microbiol44:416–426
    [Google Scholar]
  131. Salerno A., Delétoile A., Lefevre M., Ciznar I., Krovacek K., Grimont P., Brisse S.. 2007; Recombining population structure of Plesiomonas shigelloides (Enterobacteriaceae) revealed by multilocus sequence typing. J Bacteriol189:7808–7818 [CrossRef][PubMed]
    [Google Scholar]
  132. Samson R., Legendre J. B., Christen R., Fischer-Le Saux M., Achouak W., Gardan L.. 2005; Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int J Syst Evol Microbiol55:1415–1427[CrossRef]
    [Google Scholar]
  133. Samuel G., Hogbin J. P., Wang L., Reeves P. R.. 2004; Relationships of the Escherichia coli O157, O111, and O55 O-antigen gene clusters with those of Salmonella enterica and Citrobacter freundii, which express identical O antigens. J Bacteriol186:6536–6543 [CrossRef][PubMed]
    [Google Scholar]
  134. Sawana A., Adeolu M., Gupta R. S.. 2014; Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet5:429 [CrossRef][PubMed]
    [Google Scholar]
  135. Schindler J., Potuznikova B., Aldová E.. 1991; Classification of strains of Pragia fontium, Budvicia aquatica and of Leminorella by whole-cell protein pattern. J Hyg Epidemiol Microbiol Immunol36:207–216
    [Google Scholar]
  136. Shimwell J.. 1963; Obesumbacterium gen. nov. Brewers' J99:759–760
    [Google Scholar]
  137. Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M. et al. 2011; Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol7:539 [CrossRef][PubMed]
    [Google Scholar]
  138. Snopková K., Sedlář K., Bosák J., Chaloupková E., Provazník I., Šmajs D.. 2015; Complete genome sequence of 24613, an environmental bacterium from the family Enterobacteriaceae. Genome Announc3:e0074000715 [CrossRef][PubMed]
    [Google Scholar]
  139. Spröer C., Mendrock U., Swiderski J., Lang E., Stackebrandt E.. 1999; The phylogenetic position of Serratia, Buttiauxella and some other genera of the family Enterobacteriaceae. Int J Syst Evol Microbiol49:1433–1438
    [Google Scholar]
  140. Stamatakis A.. 2014; RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  141. Stephan R., Grim C. J., Gopinath G. R., Mammel M. K., Sathyamoorthy V., Trach L. H., Chase H. R., Fanning S., Tall B. D.. 2014; Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov. respectively. Int J Syst Evol Microbiol64:3402–3410[CrossRef]
    [Google Scholar]
  142. Sutra L., Christen R., Bollet C., Simoneau P., Gardan L.. 2001; Samsonia erythrinae gen. nov., sp. nov., isolated from bark necrotic lesions of Erythrina sp., and discrimination of plant-pathogenic Enterobacteriaceae by phenotypic features. Int J Syst Evol Microbiol51:1291–1304 [CrossRef][PubMed]
    [Google Scholar]
  143. Tailliez P., Laroui C., Ginibre N., Paule A., Pagès S., Boemare N.. 2010; Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. Int J Syst Evol Microbiol60:1921–1937[CrossRef]
    [Google Scholar]
  144. Talavera G., Castresana J.. 2007; Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol56:564–577 [CrossRef][PubMed]
    [Google Scholar]
  145. Tamura K., Sakazaki R., Kosako Y., Yoshizaki E.. 1986; Leclercia adecarboxylata gen. nov., comb. nov., formerly known as Escherichia adecarboxylata. Curr Microbiol13:179–184[CrossRef]
    [Google Scholar]
  146. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  147. Thomas G. M., Poinar Jr G. O.. 1979; Xenorhabdus gen. nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae. Int J Syst Evol Microbiol29:352–360
    [Google Scholar]
  148. Toh H., Weiss B. L., Perkin S. A., Yamashita A., Oshima K., Hattori M., Aksoy S.. 2006; Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res16:149–156 [CrossRef][PubMed]
    [Google Scholar]
  149. Trowbridge R. E., Dittmar K., Whiting M. F.. 2006; Identification and phylogenetic analysis of - and Photorhabdus-type bacteria from adult Hippoboscidae and Streblidae (Hippoboscoidea). J Invertebr Pathol91:64–68 [CrossRef][PubMed]
    [Google Scholar]
  150. Tyler H. L., Triplett E. W.. 2008; Plants as a habitat for beneficial and/or human pathogenic bacteria. Annu Rev Phytopathol46:53–73 [CrossRef][PubMed]
    [Google Scholar]
  151. UniProt Consortium 2015; UniProt: a hub for protein information. Nucleic Acids Res43:D204–212 [CrossRef][PubMed]
    [Google Scholar]
  152. Van Loghem J.. 1944; The classification of the plague-bacillus. Antonie van Leeuwenhoek10:15–16[PubMed][CrossRef]
    [Google Scholar]
  153. Varghese N. J., Mukherjee S., Ivanova N., Konstantinidis K. T., Mavrommatis K., Kyrpides N. C., Pati A.. 2015; Microbial species delineation using whole genome sequences. Nucleic Acids Res43:6761–6771 [CrossRef][PubMed]
    [Google Scholar]
  154. Verbarg S., Frühling A., Cousin S., Brambilla E., Gronow S., Lünsdorf H., Stackebrandt E.. 2008; Biostraticola tofi gen. nov., spec. nov., a novel member of the family Enterobacteriaceae. Curr Microbiol56:603–608 [CrossRef][PubMed]
    [Google Scholar]
  155. Wattam A. R., Abraham D., Dalay O., Disz T. L., Driscoll T., Gabbard J. L., Gillespie J. J., Gough R., Hix D. et al. 2014; PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res42:D581–591 [CrossRef][PubMed]
    [Google Scholar]
  156. Wayne L. G.. 1982; Actions of the Judicial Commission of the International Committee on Systematic Bacteriology on requests for opinions published between July 1979 and April 1981. Int J Syst Evol Microbiol32:464–465
    [Google Scholar]
  157. Werkman C. H., Gillen G. F.. 1932; Bacteria producing trimethylene glycol. J Bacteriol23:167[PubMed]
    [Google Scholar]
  158. Whelan S., Goldman N.. 2001; A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol18:691–699[PubMed][CrossRef]
    [Google Scholar]
  159. Williams K. P., Gillespie J. J., Sobral B. W., Nordberg E. K., Snyder E. E., Shallom J. M., Dickerman A. W.. 2010; Phylogeny of Gammaproteobacteria. J Bacteriol192:2305–2314 [CrossRef][PubMed]
    [Google Scholar]
  160. Wong S. Y., Paschos A., Gupta R. S., Schellhorn H. E.. 2014; Insertion/deletion-based approach for the detection of Escherichia coli O157:H7 in freshwater environments. Environ Sci Technol48:11462–11470 [CrossRef][PubMed]
    [Google Scholar]
  161. Wu D., Hugenholtz P., Mavromatis K., Pukall R., Dalin E., Ivanova N. N., Kunin V., Goodwin L., Wu M. et al. 2009; A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature462:1056–1060 [CrossRef][PubMed]
    [Google Scholar]
  162. Yaping J., Xiaoyang L., Jiaqi Y.. 1990; Saccharobacter fermentatus gen. nov., sp. nov., a new ethanol-producing bacterium. Int J Syst Evol Microbiol40:412–414
    [Google Scholar]
  163. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. 2008; The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  164. Yilmaz P., Parfrey L. W., Yarza P., Gerken J., Pruesse E., Quast C., Schweer T., Peplies J., Ludwig W. et al. 2014; The SILVA and All-species Living Tree Project (LTP) taxonomic frameworks. Nucleic Acids Res42:D643–648 [CrossRef][PubMed]
    [Google Scholar]
  165. Young J. M., Park D. C.. 2007; Relationships of plant pathogenic enterobacteria based on partial atpD, carA, and recA as individual and concatenated nucleotide and peptide sequences. Syst Appl Microbiol30:343–354 [CrossRef][PubMed]
    [Google Scholar]
  166. Zhang Y., Qiu S.. 2015; Examining phylogenetic relationships of Erwinia and Pantoea species using whole genome sequence data. Antonie van Leeuwenhoek108:1037–1046 [CrossRef][PubMed]
    [Google Scholar]
  167. Zhang Y., Fan Q., Loria R.. 2016; A re-evaluation of the taxonomy of phytopathogenic genera Dickeya and Pectobacterium using whole-genome sequencing data. Syst Appl Microbiol39:252–259 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001485
Loading
/content/journal/ijsem/10.1099/ijsem.0.001485
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error