1887

Abstract

A Gram-stain-negative, non-motile, rod-shaped, orange-pigmented strain, WDS4A13, was isolated from a marine solar saltern in Weihai, China. Strain WDS4A13 grew under optimal conditions of pH 7.0–8.0, 33 °C and with 6 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain WDS4A13 belonged to the genus . The levels of similarity between the 16S rRNA gene sequence of strain WDS4A13 and those of the type strains of recognized species of the genus were 92.0–97.3 %. The polar lipid profile of the novel isolate consisted of two unidentified phospholipids, diphosphatidylglycerol, phosphatidylethanolamine, a glycolipid and an unidentified lipid as the major polar lipids. The predominant menaquinone was MK-6, and iso-C G, iso-C and C were the major fatty acids. The DNA G+C content was 35.2 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain WDS4A13 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is WDS4A13 (=MCCC 1H00134=KCTC 52043).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001482
2016-12-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5124.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001482&mimeType=html&fmt=ahah

References

  1. Biebl H., Pukall R., Lünsdorf H., Schulz S., Allgaier M., Tindall B. J., Wagner-Döbler I.. 2007; Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense. Int J Syst Evol Microbiol57:1095–1107[CrossRef]
    [Google Scholar]
  2. Bowman J. P.. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  3. Bowman J. P., McCammon S. A., Lewis T., Skerratt J. H., Brown J. L., Nichols D. S., McMeekin T. A.. 1998; Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology144:1601–1609 [CrossRef][PubMed]
    [Google Scholar]
  4. Chen Y. G., Cui X. L., Wang Y. X., Tang S. K., Zhang Y. Q., Li W. J., Liu J. H., Peng Q., Xu L. H.. 2009; Psychroflexus sediminis sp. nov., a mesophilic bacterium isolated from salt lake sediment in China. Int J Syst Evol Microbiol59:569–573 [CrossRef][PubMed]
    [Google Scholar]
  5. Chun J., Kang J. Y., Jahng K. Y.. 2014; Psychroflexus salarius sp. nov., isolated from Gomso salt pan. Int J Syst Evol Microbiol64:3467–3472 [CrossRef][PubMed]
    [Google Scholar]
  6. Cowan S. T., Steel K. J.. 1965; Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  7. Donachie S. P., Bowman J. P., Alam M.. 2004; Psychroflexus tropicus sp. nov., an obligately halophilic Cytophaga-Flavobacterium-Bacteroides group bacterium from an Hawaiian hypersaline lake. Int J Syst Evol Microbiol54:935–940 [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  9. Komagata K., Suzuki K.. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol19:161–207[CrossRef]
    [Google Scholar]
  10. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  11. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  12. Montero-Calasanz M. C., Göker M., Rohde M., Spröer C., Schumann P., Busse H. J., Schmid M., Tindall B. J., Klenk H. P., Camacho M.. 2013; Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol63:4386–4395 [CrossRef][PubMed]
    [Google Scholar]
  13. Park S., Jung Y.-T., Park J.-M., Kim S.-G., Yoon J.-H.. 2016; Psychroflexus aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol66:2146–2151 [CrossRef][PubMed]
    [Google Scholar]
  14. Reichenbach H.. 1992; The order Cytophagales. In The Prokaryotes pp.3631–3675 Edited by Balows A., Trüper H., Dworkin M., Harder W., Schleifer K.-H.. New York: Springer;[CrossRef]
    [Google Scholar]
  15. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note, 101. Newark, DE: MIDI, Inc;
    [Google Scholar]
  16. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  17. Seiler H., Bleicher A., Busse H. J., Hüfner J., Scherer S.. 2012; Psychroflexus halocasei sp. nov., isolated from a microbial consortium on a cheese. Int J Syst Evol Microbiol62:1850–1856 [CrossRef][PubMed]
    [Google Scholar]
  18. Tamaoka J., Komagata K.. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett25:125–128 [CrossRef]
    [Google Scholar]
  19. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  20. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  21. Yoon J.-H., Kang S.-J., Jung Y.-T., Oh T.-K.. 2009; Psychroflexus salinarum sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol59:2404–2407 [CrossRef][PubMed]
    [Google Scholar]
  22. Zhang H., Hosoi-Tanabe S., Nagata S., Ban S., Imura S.. 2010; Psychroflexus lacisalsi sp. nov., a moderate halophilic bacterium isolated from a hypersaline lake (Hunazoko-Ike) in Antarctica. J Microbiol48:160–164 [CrossRef][PubMed]
    [Google Scholar]
  23. Zhong Z. P., Liu Y., Wang F., Zhou Y. G., Liu H. C., Liu Z. P.. 2016; Psychroflexus salis sp. nov. and Psychroflexus planctonicus sp. nov., isolated from a salt lake. Int J Syst Evol Microbiol66:125–131 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001482
Loading
/content/journal/ijsem/10.1099/ijsem.0.001482
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error