sp. nov., isolated from soil of a vanadium mine Free

Abstract

A Gram-stain-negative, light pink, non-motile, rod-shaped, aerobic bacterium, designated strain XNV015, was isolated from soil of a vanadium mine. Phylogenetic analyses based on 16S rRNA gene sequences indicated that it belongs to the genus and was closely related to DSM 18130 (96.93 % sequence similarity), NWER-II11 (96.66 %), DS-57 (96.54 %), KACC 16221 (96.54 %) and KACC 14939 (96.47 %). This strain clearly differed from the closely related species in terms of acid production from rhamnose and ethanol. Menaquinone-7 was the predominant respiratory quinone. The predominant fatty acids included iso-C, C 5c, summed feature 3, iso-C 3-OH and C 2-OH. The major polar lipids were phosphatidylethanolamine, glycolipids, lipids and aminolipids. The genomic DNA G+C content was 43.8 mol%. The genotypic analysis, biochemical properties, and phenotypic and chemotaxonomic characteristics indicate that strain XNV015 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is XNV015 (=CCTCC AB 2015319=KCTC 42866).

Keyword(s): Pedobacter and vanadium mine soil
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001480
2016-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5112.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001480&mimeType=html&fmt=ahah

References

  1. Breznak J. A., Costilow R. N. 1994; Physicochemical factors in growth. In Methods for General and Molecular Bacteriology pp. 137–154 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  2. Chen F., Shi Z., Wang G. 2012; Arenimonas metalli sp. nov., isolated from an iron mine. Int J Syst Evol Microbiol 62:1744–1749 [View Article][PubMed]
    [Google Scholar]
  3. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48:459–470 [View Article]
    [Google Scholar]
  4. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  5. Derichs J., Kämpfer P., Lipski A. 2014; Pedobacter nutrimenti sp. nov., isolated from chilled food. Int J Syst Evol Microbiol 64:1310–1316 [View Article][PubMed]
    [Google Scholar]
  6. Dong X. Z., Cai M. Y. 2001 Determinative Manual for Routine Bacteriology Beijing: Scientific Press;
    [Google Scholar]
  7. Du J., Singh H., Ngo H. T., Won K. H., Kim K. Y., Yi T. H. 2015; Pedobacter daejeonensis sp. nov. and Pedobacter trunci sp. nov., isolated from an ancient tree trunk, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 65:1241–1246 [View Article][PubMed]
    [Google Scholar]
  8. Dussault H. P. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol 70:484–485[PubMed]
    [Google Scholar]
  9. Fan H., Su C., Wang Y., Yao J., Zhao K., Wang Y., Wang G. 2008; Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J Appl Microbiol 105:529–539 [View Article][PubMed]
    [Google Scholar]
  10. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  11. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  12. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  13. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 66:24–26[PubMed]
    [Google Scholar]
  14. Joung Y., Kang H., Kim H., Lee B. I., Kwon O. S., Joh K. 2014; Pedobacter soyangensis sp. nov., isolated from Lake Soyang in Korea. J Microbiol 52:83–87 [View Article][PubMed]
    [Google Scholar]
  15. Jung J., Park W. 2012; Pedobacter jeongneungensis sp. nov., isolated from forest soil. J Microbiol 50:660–664 [View Article]
    [Google Scholar]
  16. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  17. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  18. Kook M., Park Y., Yi T. H. 2014; Pedobacter jejuensis sp. nov., isolated from soil of a pine grove, and emended description of the genus Pedobacter. Int J Syst Evol Microbiol 64:1789–1794 [View Article][PubMed]
    [Google Scholar]
  19. Kook M. C., Ngo H. T. T., Yi T. H. 2015; Pedobacter ureilyticus sp. nov., isolated from tomato rhizosphere soil. Int J Syst Evol Microbiol 65:1008–1014 [View Article][PubMed]
    [Google Scholar]
  20. Kroppenstedt R. M. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367 [View Article]
    [Google Scholar]
  21. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series Vol. 20) pp. 173–199 Edited by Goodfellow M., Minnikin D. E. New York: Academic Press;
    [Google Scholar]
  22. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. 2007; clustal w and clustal_x version 2.0. Bioinformatics 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  23. Park S., Jung Y. T., Park J. M., Won S. M., Yoon J. H. 2015a; Pedobacter silvilitoris sp. nov., isolated from wood falls. Int J Syst Evol Microbiol 65:1284–1289 [View Article][PubMed]
    [Google Scholar]
  24. Park S., Park J. M., Jung Y. T., Won S. M., Yoon J. H. 2015b; Pedobacter lignilitoris sp. nov., isolated from wood falls. Int J Syst Evol Microbiol 65:3481–3486 [View Article][PubMed]
    [Google Scholar]
  25. Qui X., Qu Z., Jiang F., Ren L., Chang X., Kan W., Fang C., Peng F. 2014; Pedobacter huanghensis sp. nov. and Pedobacter glacialis sp. nov., isolated from Arctic glacier foreland. Int J Syst Evol Microbiol 64:2431–2436 [View Article][PubMed]
    [Google Scholar]
  26. Ryu E. 1940; A simple method of differentiation between Gram-positive and Gram-negative organisms without staining. Kitasato ArchExp Med 17:58–63
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  28. Sasser M. 1990 Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  29. Singh H., Du J., Ngo H. T. T., Kim K. Y., Yi T. H. 2015; Pedobacter lotistagni sp. nov. isolated from lotus pond water. Antonie Van Leeuwenhoek 107:951–959 [View Article][PubMed]
    [Google Scholar]
  30. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J. 1998; Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48:165–177 [View Article][PubMed]
    [Google Scholar]
  32. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  33. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  34. Wilson K. H., Blitchington R. B., Greene R. C. 1990; Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 28:1942–1946[PubMed]
    [Google Scholar]
  35. Yang J. E., Shin J. Y., Park S. Y., Mavlonov G. T., Yi E. J., Lee E. H., Lee J. M., Yi T. H. 2012; Pedobacter kyungheensis sp. nov., with ginsenoside converting activity. J Gen Appl Microbiol 58:309–316 [View Article][PubMed]
    [Google Scholar]
  36. Zhang H., Zhang J., Song M., Cheng M. G., Wu Y. D., Guo S. H., Li Q., Hong Q., Huang X. 2015; Pedobacter nanyangensis sp. nov., isolated from herbicide-contaminated soil. Int J Syst Evol Microbiol 65:3517–3521 [View Article][PubMed]
    [Google Scholar]
  37. Zhou Z., Jiang F., Wang S., Peng F., Dai J., Li W., Fang C. 2012; Pedobacter arcticus sp. nov., a facultative psychrophile isolated from Arctic soil, and emended descriptions of the genus Pedobacter, Pedobacter heparinus, Pedobacter daechungensis, Pedobacter terricola, Pedobacter glucosidilyticus and Pedobacter lentus. Int J Syst Evol Microbiol 62:1963–1969 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001480
Loading
/content/journal/ijsem/10.1099/ijsem.0.001480
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed