1887

Abstract

Two gamma- and UV-radiation-resistant, pink-coloured bacterial strains, designated YIM F302 and YIM F235, were isolated from the desert of Yanbu' al Bahr located in west of Saudi Arabia. Taxonomic positions of the two isolates were investigated by polyphasic taxonomic approaches. Cells of the two strains were Gram-stain-negative, aerobic and rod-shaped. They were able to grow at 15–45 °C and pH 6.0–8.0 and had a NaCl tolerance limit of 1 % (w/v). Phylogenetic analyses based on 16S rRNA gene sequences revealed that strains YIM F302 and YIM F235 represent members of the genus , sharing highest sequence similarities of 98.3 and 98.4 %, respectively, with DSM 3963. The strains were found to contain MK-8 as the respiratory menaquinone. Major fatty acids (>10 %) of the two strains were C 6, C and C 7. DNA–DNA hybridization values of the two isolates against the closely related type strains were significantly below the 70 % limit for species delineation. Genomic DNA G+C contents of strains YIM F302 and YIM F235 were 69.3 and 69.0 mol%, respectively. Based on the phenotypic and genotypic characteristics recorded, it is determined that the two isolates represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is YIM F302 (=CGMCC 1.15089=DSM 29933).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001479
2016-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5106.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001479&mimeType=html&fmt=ahah

References

  1. Asker D., Awad T. S., Beppu T., Ueda K. 2009; Deinococcus aquiradiocola sp. nov., isolated from a radioactive site in Japan. Int J Syst Evol Microbiol 59:144–149 [View Article][PubMed]
    [Google Scholar]
  2. Brooks B. W., Murray R. G. E. 1981; Nomenclature for ‘Micrococcus radiodurans’ and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Evol Microbiol 31:353–360
    [Google Scholar]
  3. Callegan R. P., Nobre M. F., McTernan P. M., Battista J. R., Navarro-González R., McKay C. P., da Costa M. S., Rainey F. A. 2008; Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments. Int J Syst Evol Microbiol 58:1252–1258 [View Article][PubMed]
    [Google Scholar]
  4. Cerny G. 1978; Studies on the aminopeptidase test for the distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol and Biotechnol 5:113–122 [View Article]
    [Google Scholar]
  5. Chen W., Wang B., Hong H., Yang H., Liu S.-J. 2012; Deinococcus reticulitermitis sp. nov., isolated from a termite gut. Int J Syst Evol Microbiol 62:78–83 [View Article][PubMed]
    [Google Scholar]
  6. Christensen H., Angen O., Mutters R., Olsen J. E., Bisgaard M. 2000; DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 50:1095–1102 [View Article][PubMed]
    [Google Scholar]
  7. Collins M., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4‐diaminobutyric acid. J Bacteriol 48:459–470
    [Google Scholar]
  8. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [View Article][PubMed]
    [Google Scholar]
  9. de Groot A., Chapon V., Servant P., Christen R., Saux M. F., Sommer S., Heulin T. 2005; Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol 55:2441–2446 [View Article][PubMed]
    [Google Scholar]
  10. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  11. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  12. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  13. Ferreira A. C., Nobre M. F., Rainey F. A., Silva M. T., Wait R., Burghardt J., Chung A. P., da Costa M. S. 1997; Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939–947 [View Article][PubMed]
    [Google Scholar]
  14. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zoo 20:406–416 [View Article]
    [Google Scholar]
  15. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H.-N. 1974; Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63 [View Article]
    [Google Scholar]
  16. Hirsch P., Gallikowski C. A., Siebert J., Peissl K., Kroppenstedt R., Schumann P., Stackebrandt E., Anderson R. 2004; Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst Appl Microbiol 27:636–645 [View Article][PubMed]
    [Google Scholar]
  17. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  18. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  19. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703 [View Article][PubMed]
    [Google Scholar]
  20. Kroppenstedt R. M. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2367 [View Article]
    [Google Scholar]
  21. Lai W.-A., Kämpfer P., Arun A. B., Shen F.-T., Huber B., Rekha P. D., Young C.-C. 2006; Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L. Int J Syst Evol Microbiol 56:787–791 [View Article][PubMed]
    [Google Scholar]
  22. Lester E. D., Satomi M., Ponce A. 2007; Microflora of extreme arid Atacama Desert soils. Soil Biol Biochem 39:704–708 [View Article]
    [Google Scholar]
  23. Li W. J., Xu P., Schumann P., Zhang Y. Q., Pukall R., Xu L. H., Stackebrandt E., Jiang C. L. 2007; Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  24. Mergaert J., Cnockaert M. C., Swings J. 2002; Fulvimonas soli gen. nov., sp. nov., a gamma-proteobacterium isolated from soil after enrichment on acetylated starch plastic. Int J Syst Evol Microbiol 52:1285–1289 [View Article][PubMed]
    [Google Scholar]
  25. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  26. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [View Article]
    [Google Scholar]
  27. Oyaizu H., Stackebrandt E., Schleifer K. H., Ludwig W., Pohla H., Ito H., Hirata A., Oyaizu Y., Komagata K. 1987; A radiation-resistant rod-shaped bacterium, Deinococcus grandis gen. nov., sp. nov., with peptidoglycan containing ornithine. Int J Syst Bacteriol 37:62–67 [View Article]
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  29. Sasser M. 1990 Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newwark, DE: MIDI Inc;
    [Google Scholar]
  30. Srinivasan S., Lee J.-J., Lim S., Joe M., Kim M. K. 2012a; Deinococcus humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 62:2844–2850 [View Article]
    [Google Scholar]
  31. Srinivasan S., Kim M. K., Lim S., Joe M., Lee M. 2012b; Deinococcus daejeonensis sp. nov., isolated from sludge in a sewage disposal plant. Int J Syst Evol Microbiol 62:1265–1270 [View Article]
    [Google Scholar]
  32. Suresh K., Reddy G. S., Sengupta S., Shivaji S. 2004; Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 54:457–461 [View Article][PubMed]
    [Google Scholar]
  33. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  35. Wang W., Mao J., Zhang Z., Tang Q., Xie Y., Zhu J., Zhang L., Liu Z., Shi Y., Goodfellow M. 2010; Deinococcus wulumuqiensis sp. nov., and Deinococcus xibeiensis sp. nov., isolated from radiation-polluted soil. Int J Syst Evol Microbiol 60:2006–2010 [View Article][PubMed]
    [Google Scholar]
  36. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I, Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee onreconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464 [CrossRef]
    [Google Scholar]
  37. Weon H. Y., Kim B. Y., Schumann P., Son J. A., Jang J., Go S. J., Kwon S. W. 2007; Deinococcus cellulosilyticus sp. nov., isolated from air. Int J Syst Evol Microbiol 57:1685–1688 [View Article][PubMed]
    [Google Scholar]
  38. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L. 2005; Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  39. Yoo S. H., Weon H. Y., Kim S. J., Kim Y. S., Kim B. Y., Kwon S. W. 2010; Deinococcus aerolatus sp. nov. and Deinococcus aerophilus sp. nov., isolated from air samples. Int J Syst Evol Microbiol 60:1191–1195 [View Article][PubMed]
    [Google Scholar]
  40. Zhang Y. Q., Sun C. H., Li W. J., Yu L. Y., Zhou J. Q., Zhang Y. Q., Xu L. H., Jiang C. L. 2007; Deinococcus yunweiensis sp. nov., a gamma- and UV-radiation-resistant bacterium from China. Int J Syst Evol Microbiol 57:370–375 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001479
Loading
/content/journal/ijsem/10.1099/ijsem.0.001479
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error