1887

Abstract

A beige-pigmented, oxidase-positive bacterial strain (WPAn02), isolated as a presumably airborne contaminant of an axenic bacterial microcosm, was studied using a polyphasic taxonomic approach. Cells of the isolate were coccoid and stained Gram-negative. A comparison of the 16S rRNA gene sequence of strain WPAn02 with sequences of type strains of the most closely related species of the genus Paracoccus showed highest sequence similarities to Paracoccus chinensis (97.7 %), Paracoccus marinus (97.1 %), Paracoccus niistensis (97.4 %) and ‘ Paracoccus zhejiangensis ' (97.0 %). 16S rRNA gene sequence similarities to all other species of the genus Paracoccus were below 97 %. The fatty acid profile of the strain consisted of the major fatty acids C18 : 1ω7c9t/ω12t and C18 : 0. DNA–DNA hybridizations between WPAn02 and type strains of P. chinensis, P. marinus , P. niistensis , and ‘P. zhejiangensis’ resulted in similarity values of 49 % (reciprocal 22 %), 16 % (reciprocal 10 %), 30 % (reciprocal 32 %), and 18 % (reciprocal 7 %), respectively. DNA–DNA hybridization results together with the differentiating biochemical and chemotaxonomic properties indicated that WPAn02 represents a novel species of the genus Paracoccus , for which the name Paracoccus contaminans sp. nov. (type strain WPAn02=RKI 16-01929=LMG 29738=CCM 8701=CIP 111112), is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001478
2016-12-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5101.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001478&mimeType=html&fmt=ahah

References

  1. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F..( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. . Proc Natl Acad Sci USA 75: 4801–4805. [CrossRef] [PubMed]
    [Google Scholar]
  2. Dagaster S., Deepa C. K., Li W.-J., Tang S. K., Pandey A..( 2011;). Paracoccus niistensis sp. nov isolated from forest soil India. . Ant van Leeuwenhoek 99: 501–506.[CrossRef]
    [Google Scholar]
  3. Davis D. H., Doudoroff M., Stanier R. Y., Mandel M..( 1969;). Proposal to reject the genus Hydrogenomonas: Taxonomic implications. . Int J Syst Bacteriol 19: 375–390. [CrossRef]
    [Google Scholar]
  4. Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  5. Felsenstein J..( 2005;). PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the Author. Department of Genome Sciences. Seattle:: University of Washington;.
    [Google Scholar]
  6. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (Editors) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  7. Glaeser S. P., Falsen E., Martin K., Kämpfer P..( 2013;). Alicyclobacillus consociatus sp. nov., isolated from a human clinical specimen. . Int J Syst Evol Microbiol 63: 3623–3627. [CrossRef] [PubMed]
    [Google Scholar]
  8. Gonzalez J. M., Saiz-Jimenez C..( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4: 770–773.[PubMed] [CrossRef]
    [Google Scholar]
  9. Kämpfer P., Kroppenstedt R. M..( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42: 989–1005. [CrossRef]
    [Google Scholar]
  10. Kämpfer P., Steiof M., Dott W..( 1991;). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol 21: 227–251. [CrossRef] [PubMed]
    [Google Scholar]
  11. Khan S. T., Takaichi S., Harayama S..( 2008;). Paracoccus marinus sp. nov., an adonixanthin diglucoside-producing bacterium isolated from coastal seawater in Tokyo Bay. . Int J Syst Evol Microbiol 58: 383–386. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lane D. J..( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics. Edited by Stackebrandt E., Goodfellow M.. Chichester:: Wiley;.
    [Google Scholar]
  14. Li H. F., Qu J. H., Yang J. S., Li Z. J., Yuan H. L..( 2009;). Paracoccus chinensis sp. nov., isolated from sediment of a reservoir. . Int J Syst Evol Microbiol 59: 2670–2674. [CrossRef] [PubMed]
    [Google Scholar]
  15. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al.( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32: 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  16. Pitcher D. G., Saunders N. A., Owen R. J..( 1989;). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. . Lett Appl Microbiol 8: 151–156. [CrossRef]
    [Google Scholar]
  17. Pruesse E., Peplies J., Glöckner F. O..( 2012;). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28: 1823–1829. [CrossRef] [PubMed]
    [Google Scholar]
  18. Rainey F. A., Kelly D. P., Stackebrandt E., Burghardt J., Hiraishi A., Katayama Y., Wood A. P..( 1999;). A re-evaluation of the taxonomy of Paracoccus denitrificans and a proposal for the combination Paracoccus pantotrophus comb. nov. . Int J Syst Bacteriol 49: 645–651. [CrossRef] [PubMed]
    [Google Scholar]
  19. Siller H., Rainey F. A., Stackebrandt E., Winter J., Fred A. R..( 1996;). Isolation and characterization of a new Gram-negative, acetone-degrading, nitrate-reducing bacterium from soil, Paracoccus solventivorans sp. nov. . Int J Syst Bacteriol 46: 1125–1130. [CrossRef] [PubMed]
    [Google Scholar]
  20. Stamatakis A..( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22: 2688–2690. [CrossRef] [PubMed]
    [Google Scholar]
  21. Urakami T., Araki H., Oyanagi H., Suzuki K., Komagata K..( 1990;). Paracoccus aminophilus sp. nov. and Paracoccus aminovorans sp. nov., which utilize N,N-dimethylformamide. . Int J Syst Bacteriol 40: 287–291. [CrossRef] [PubMed]
    [Google Scholar]
  22. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R..( 2008;). The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31: 241–250. [CrossRef] [PubMed]
    [Google Scholar]
  23. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R..( 1998;). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. . Int J Syst Bacteriol 48: 179–186. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001478
Loading
/content/journal/ijsem/10.1099/ijsem.0.001478
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error