1887

Abstract

A beige-pigmented, oxidase-positive bacterial strain (WPAn02), isolated as a presumably airborne contaminant of an axenic bacterial microcosm, was studied using a polyphasic taxonomic approach. Cells of the isolate were coccoid and stained Gram-negative. A comparison of the 16S rRNA gene sequence of strain WPAn02 with sequences of type strains of the most closely related species of the genus showed highest sequence similarities to (97.7 %), (97.1 %), (97.4 %) and ‘' (97.0 %). 16S rRNA gene sequence similarities to all other species of the genus were below 97 %. The fatty acid profile of the strain consisted of the major fatty acids Cω/ω12 and C. DNA–DNA hybridizations between WPAn02 and type strains of , , , and ‘’ resulted in similarity values of 49 % (reciprocal 22 %), 16 % (reciprocal 10 %), 30 % (reciprocal 32 %), and 18 % (reciprocal 7 %), respectively. DNA–DNA hybridization results together with the differentiating biochemical and chemotaxonomic properties indicated that WPAn02 represents a novel species of the genus , for which the name sp. nov. (type strain WPAn02=RKI 16-01929=LMG 29738=CCM 8701=CIP 111112), is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001478
2016-12-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5101.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001478&mimeType=html&fmt=ahah

References

  1. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F.. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA75:4801–4805 [CrossRef][PubMed]
    [Google Scholar]
  2. Dagaster S., Deepa C. K., Li W.-J., Tang S. K., Pandey A.. 2011; Paracoccus niistensis sp. nov isolated from forest soil India. Ant van Leeuwenhoek99:501–506[CrossRef]
    [Google Scholar]
  3. Davis D. H., Doudoroff M., Stanier R. Y., Mandel M.. 1969; Proposal to reject the genus Hydrogenomonas: Taxonomic implications. Int J Syst Bacteriol19:375–390 [CrossRef]
    [Google Scholar]
  4. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. 2005; PHYLIP (Phylogeny Inference Package) version 3.6 Distributed by the Author. Department of Genome Sciences Seattle: University of Washington;
    [Google Scholar]
  6. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (Editors) 1994; Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Glaeser S. P., Falsen E., Martin K., Kämpfer P.. 2013; Alicyclobacillus consociatus sp. nov., isolated from a human clinical specimen. Int J Syst Evol Microbiol63:3623–3627 [CrossRef][PubMed]
    [Google Scholar]
  8. Gonzalez J. M., Saiz-Jimenez C.. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol4:770–773[PubMed][CrossRef]
    [Google Scholar]
  9. Kämpfer P., Kroppenstedt R. M.. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol42:989–1005 [CrossRef]
    [Google Scholar]
  10. Kämpfer P., Steiof M., Dott W.. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol21:227–251 [CrossRef][PubMed]
    [Google Scholar]
  11. Khan S. T., Takaichi S., Harayama S.. 2008; Paracoccus marinus sp. nov., an adonixanthin diglucoside-producing bacterium isolated from coastal seawater in Tokyo Bay. Int J Syst Evol Microbiol58:383–386 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  13. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  14. Li H. F., Qu J. H., Yang J. S., Li Z. J., Yuan H. L.. 2009; Paracoccus chinensis sp. nov., isolated from sediment of a reservoir. Int J Syst Evol Microbiol59:2670–2674 [CrossRef][PubMed]
    [Google Scholar]
  15. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. 2004; arb: a software environment for sequence data. Nucleic Acids Res32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  16. Pitcher D. G., Saunders N. A., Owen R. J.. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol8:151–156 [CrossRef]
    [Google Scholar]
  17. Pruesse E., Peplies J., Glöckner F. O.. 2012; SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  18. Rainey F. A., Kelly D. P., Stackebrandt E., Burghardt J., Hiraishi A., Katayama Y., Wood A. P.. 1999; A re-evaluation of the taxonomy of Paracoccus denitrificans and a proposal for the combination Paracoccus pantotrophus comb. nov. Int J Syst Bacteriol49:645–651 [CrossRef][PubMed]
    [Google Scholar]
  19. Siller H., Rainey F. A., Stackebrandt E., Winter J., Fred A. R.. 1996; Isolation and characterization of a new Gram-negative, acetone-degrading, nitrate-reducing bacterium from soil, Paracoccus solventivorans sp. nov. Int J Syst Bacteriol46:1125–1130 [CrossRef][PubMed]
    [Google Scholar]
  20. Stamatakis A.. 2006; RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  21. Urakami T., Araki H., Oyanagi H., Suzuki K., Komagata K.. 1990; Paracoccus aminophilus sp. nov. and Paracoccus aminovorans sp. nov., which utilize N,N-dimethylformamide. Int J Syst Bacteriol40:287–291 [CrossRef][PubMed]
    [Google Scholar]
  22. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. 2008; The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  23. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R.. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol48:179–186 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001478
Loading
/content/journal/ijsem/10.1099/ijsem.0.001478
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error