1887

Abstract

A bacterial strain designated STM-24 was isolated from a spring in Taiwan and characterized using the polyphasic taxonomic approach. Cells of strain STM-24 were Gram-staining- negative, aerobic, poly-β-hydroxybutyrate accumulating, non-motile, rod shaped and forming light yellow-coloured colonies. Growth occurred at 15–30 °C (optimum, 20 °C), at pH 5.0–9.0 (optimum, pH 6.0) and with 0–0.5 % NaCl (optimum, 0 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain STM-24 belonged to the genus and was most closely related to SLH-16 with sequence similarity of 98.4 %. The major fatty acids (>10 %) of strain STM-24 were Cω7, summed feature 3 (Cω7 and/or Cω6) and C. The major 2-hydroxy fatty acid was C 2-OH. The polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, sphingoglycolipid, phosphatidylcholine and several uncharacterized lipids. The major polyamine was spermidine. The major isoprenoid quinone was Q-10. The DNA G+C content was 69.1mol%. The DNA–DNA hybridization value for strain STM-24 with SLH-16, JCM 12465 and DSM 12447 was less than 55 %. Phenotypic characteristics of the novel strain also differed from those of the closest related species of the genus . On the basis of the genotypic, chemotaxonomic and phenotypic data, strain STM-24 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is STM-24 (=BCRC 80925=LMG 29291=KCTC 42984).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001475
2016-12-01
2020-11-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5083.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001475&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kudo Y., Oyaizu H.. 1997; The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol47:249–251 [CrossRef][PubMed]
    [Google Scholar]
  2. Balkwill D. L., Drake G. R., Reeves R. H., Fredrickson J. K., White D. C., Ringelberg D. B., Chandler D. P., Romine M. F., Kennedy D. W., Spadoni C. M.. 1997; Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol47:191–201 [CrossRef][PubMed]
    [Google Scholar]
  3. Beveridge T. J., Lawrence J. R., Murray R. G. E.. 2007; Sampling and staining for light microscopy. In Methods for General and Molecular Bacteriology, 3rd edn. pp.19–33 Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Bowman J. P.. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  5. Breznak J. A., Costilow R. N.. 2007; Physicochemical factors in growth. In Methods for General and Molecular Bacteriology, 3rd edn. pp.309–329 Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Busse J., Auling G.. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol11:1–8 [CrossRef]
    [Google Scholar]
  7. Busse H.-J., Bunka S., Hensel A., Lubitz W.. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol47:698–708 [CrossRef]
    [Google Scholar]
  8. Chang S. C., Wang J. T., Vandamme P., Hwang J. H., Chang P. S., Chen W. M.. 2004; Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. Syst Appl Microbiol27:43–49 [CrossRef][PubMed]
    [Google Scholar]
  9. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P.. 2001; Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol51:1729–1735 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen Q., Zhang J., Wang C.-H., Jiang J., Kwon S.-W., Sun L.-N., Shen W.-B., He J.. 2014; Novosphingobium chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from activated sludge. Int J Syst Evol Microbiol64:2573–2578 [CrossRef][PubMed]
    [Google Scholar]
  11. Chen W. M., Chen J. C., Huang C. W., Young C. C., Sheu S. Y.. 2016; Novosphingobium colocasiae sp. nov., isolated from a taro field. Int J Syst Evol Microbiol66:673–679 [CrossRef][PubMed]
    [Google Scholar]
  12. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T. et al. 2009; The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res37:D141–D145 [CrossRef][PubMed]
    [Google Scholar]
  13. Collins M. D.. 1994; Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics pp.265–309 Edited by Goodfellow M., O’Donnell A. G.. Chichester: Wiley;
    [Google Scholar]
  14. Embley T. M., Wait R.. 1994; Structural lipids of eubacteria. In Chemical Methods in Prokaryotic Systematics pp.121–161 Edited by Goodfellow M., O’Donnell A. G.. Chichester: Wiley;
    [Google Scholar]
  15. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  16. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  17. Felsenstein J.. 1993; phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA
  18. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  19. Huo Y. Y., You H., Li Z. Y., Wang C. S., Xu X. W.. 2015; Novosphingobium marinum sp. nov., isolated from seawater. Int J Syst Evol Microbiol65:676–680 [CrossRef][PubMed]
    [Google Scholar]
  20. Kämpfer P., Witzenberger R., Denner E. B., Busse H. J., Neef A.. 2002; Novosphingobium hassiacum sp. nov., a new species isolated from an aerated sewage pond. Syst Appl Microbiol25:37–45 [CrossRef][PubMed]
    [Google Scholar]
  21. Kämpfer P., Martin K., McInroy J. A., Glaeser S. P.. 2015a; Proposal of Novosphingobium rhizosphaerae sp. nov., isolated from the rhizosphere. Int J Syst Evol Microbiol65:195–200 [CrossRef][PubMed]
    [Google Scholar]
  22. Kämpfer P., Martin K., McInroy J. A., Glaeser S. P.. 2015b; Novosphingobium gossypii sp. nov., isolated from Gossypium hirsutum. Int J Syst Evol Microbiol65:2831–2837 [CrossRef][PubMed]
    [Google Scholar]
  23. Kämpfer P., Rosselló-Mora R., Hermansson M., Persson F., Huber B., Falsen E., Busse H.-J.. 2007; Undibacterium pigrum gen. nov., sp. nov., isolated from drinking water. Int J Syst Evol Microbiol57:1510–1515 [CrossRef][PubMed]
    [Google Scholar]
  24. Kämpfer P., Young C.-C., Busse H.-J., Lin S.-Y., Rekha P. D., Arun A. B., Chen W.-M., Shen F.-T., Wu Y.-H.. 2011; Novosphingobium soli sp. nov., isolated from soil. Int J Syst Evol Microbiol61:259–263 [CrossRef][PubMed]
    [Google Scholar]
  25. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  26. Kimura M.. 1983; The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;[CrossRef]
    [Google Scholar]
  27. Kluge A. G., Farris J. S.. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool18:1–32 [CrossRef]
    [Google Scholar]
  28. Lin S. Y., Hameed A., Liu Y. C., Hsu Y. H., Lai W. A., Huang H., Young C. C.. 2014; Novosphingobium arabidopsis sp. nov., a DDT-resistant bacterium isolated from the rhizosphere of Arabidopsis thaliana. Int J Syst Evol Microbiol64:594–598 [CrossRef][PubMed]
    [Google Scholar]
  29. Liu Z.-P., Wang B.-J., Liu Y.-H., Liu S.-J.. 2005; Novosphingobium taihuense sp. nov., a novel aromatic-compound-degrading bacterium isolated from Taihu Lake, China. Int J Syst Evol Microbiol55:1229–1232 [CrossRef][PubMed]
    [Google Scholar]
  30. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C Content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  31. Murray R. G. E., Doetsch R. N., Robinow C. F.. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp.21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  32. Niharika N., Moskalikova H., Kaur J., Sedlackova M., Hampl A., Damborsky J., Prokop Z., Lal R.. 2013; Novosphingobium barchaimii sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol63:667–672 [CrossRef][PubMed]
    [Google Scholar]
  33. Nokhal T. H., Schlegel H. G.. 1983; Taxonomic Study of Paracoccus denitrificans. Int J Syst Bacteriol33:26–37 [CrossRef]
    [Google Scholar]
  34. Powers E. M.. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol61:3756–3758[PubMed]
    [Google Scholar]
  35. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  36. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101.. Newark, DE: MIDI Inc;
    [Google Scholar]
  37. Sheu S. Y., Chen Z. H., Chen W. M.. 2016; Novosphingobium piscinae sp. nov., isolated from a fish culture pond. Int J Syst Evol Microbiol66:1539–1545 [CrossRef][PubMed]
    [Google Scholar]
  38. Takeuchi M., Hamana K., Hiraishi A.. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol51:1405–1417 [CrossRef][PubMed]
    [Google Scholar]
  39. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  40. Thompson J., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal _x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res24:4876–4882 [CrossRef]
    [Google Scholar]
  41. Tiirola M. A., Busse H.-J., Kämpfer P., Männistö M. K.. 2005; Novosphingobium lentum sp. nov., a psychrotolerant bacterium from a polychlorophenol bioremediation process. Int J Syst Evol Microbiol55:583–588 [CrossRef][PubMed]
    [Google Scholar]
  42. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Bacteriology, 3rd edn. pp.330–393 Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  43. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464[CrossRef]
    [Google Scholar]
  44. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  45. Wen C. M., Tseng C. S., Cheng C. Y., Li Y. K.. 2002; Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem35:213–219 [CrossRef][PubMed]
    [Google Scholar]
  46. Yuan J., Lai Q., Zheng T., Shao Z.. 2009; Novosphingobium indicum sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment. Int J Syst Evol Microbiol59:2084–2088 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001475
Loading
/content/journal/ijsem/10.1099/ijsem.0.001475
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error