1887

Abstract

Two Gram-stain-negative, oxidase-negative, catalase-positive, aerobic and coccus-shaped bacterial strains, KSY3-6 and JSH6-18, were isolated from soil in South Korea. Strains KSY3-6 and JSH6-18 showed high resistance to gamma-ray and UVC irradiation. The 16S rRNA gene sequences of strains KSY3-6 and JSH6-18 showed a novel subline within the genus Deinococcus in the family Deinococcaceae . They shared 94.8–86.4 % nucleotide similarities with other species of the genus Deinococcus. Strain KSY3-6 exhibited high DNA–DNA hybridization values with JSH6-18 (77±0.8 %). The two strains showed typical chemotaxonomic characteristics of the genus Deinococcus , including the presence of menaquinone 8 (MK-8) as predominant respiratory quinone and C16 : 0, C17 : 0cyclo and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c) as major fatty acids. The G+C content of the DNA of strains KSY3-6 and JSH6-18 was 62.0 and 62.4 mol%, respectively. Polar lipids in strains KSY3-6 and JSH6-18 were mainly phosphoglycolipids. Based on their phenotypic and genotypic properties, strains KSY3-6 and JSH6-18 should be classified as representatives of a novel species in the genus Deinococcus , for which the name Deinococcus persicinus sp. nov. is proposed. The type strain is KSY3-6 (=KCTC 33787=JCM 31313). The reference strain is JSH6-18 (=KCTC 33788=JCM 31312).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001473
2016-12-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5077.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001473&mimeType=html&fmt=ahah

References

  1. Atlas R. M..( 1993;). Handbook of Microbiological Media. Edited by Parks L. C.. Boca raton, FL:: CRC press;.
    [Google Scholar]
  2. Bernardet J. F., Nakagawa Y., Holmes B.. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52: 1049–1070. [CrossRef] [PubMed]
    [Google Scholar]
  3. Brooks B. W., Murray R. G. E..( 1981;). Nomenclature for ‘Micrococcus radiodurans’ and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. . Int J Syst Evol Microbiol 31: 353–360.
    [Google Scholar]
  4. Collins M. D., Jones D..( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. . Microbiol Rev 45: 316–354.[PubMed]
    [Google Scholar]
  5. Daly M. J..( 2012;). Death by protein damage in irradiated cells. . DNA Repair 11: 12–21. [CrossRef] [PubMed]
    [Google Scholar]
  6. Doetsch R..( 1981;). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 21–33.
    [Google Scholar]
  7. Edgar R. C..( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32: 1792–1797. [CrossRef] [PubMed]
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E..( 1989;). Fluorometric DNA–DNA hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Evol Microbiol 39: 224–229.
    [Google Scholar]
  9. Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  10. Fitch W. M..( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20: 406–416. [CrossRef]
    [Google Scholar]
  11. Frank J. A., Reich C. I., Sharma S., Weisbaum J. S., Wilson B. A., Olsen G. J..( 2008;). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. . Appl Environ Microbiol 74: 2461–2470. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hall T. A..( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucl Acids Symp Ser 41: 95–98.
    [Google Scholar]
  13. Im W. T., Jung H. M., Ten L. N., Kim M. K., Bora N., Goodfellow M., Lim S., Jung J., Lee S. T..( 2008;). Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge. . Int J Syst Evol Microbiol 58: 2348–2353. [CrossRef] [PubMed]
    [Google Scholar]
  14. Im S., Song D., Joe M., Kim D., Park D. H., Lim S..( 2013;). Comparative survival analysis of 12 histidine kinase mutants of Deinococcus radiodurans after exposure to DNA-damaging agents. . Bioprocess Biosyst Eng 36: 781–789. [CrossRef] [PubMed]
    [Google Scholar]
  15. Joo E. S., Lee J.-J., Cha S., Jheong W., Seo T., Lim S., Jeong S.-W., Srinivasan S..( 2015a;). Spirosoma pulveris sp. nov., a bacterium isolated from a dust sample collected at Chungnam province, South Korea. . J Microbiol Biotechnol 53: 750–755. [CrossRef]
    [Google Scholar]
  16. Joo E. S., Kim E. B., Jeon S. H., Srinivasan S..( 2015b;). Complete genome sequence of Deinococcus soli N5(T), a gamma-radiation- resistant bacterium isolated from rice field in South Korea. . J Biotechnol 211: 115–116. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kämpfer P., Lodders N., Huber B., Falsen E., Busse H. J..( 2008;). Deinococcus aquatilis sp. nov., isolated from water. . Int J Syst Evol Microbiol 58: 2803–2806. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kim M. K., Back C. G., Jung H. Y., Srinivasan S..( 2015a;). Complete genome sequence of Spirosoma radiotolerans, a gamma-radiation-resistant bacterium isolated from rice field in South Korea. . J Biotechnol 208: 11–12. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kim M. K., Srinivasan S., Back C.-G., Joo E. S., Lee S.-Y., Jung H.-Y..( 2015b;). Complete genome sequence of Deinococcus swuensis, a bacterium resistant to radiation toxicity. . Mol Cell Toxicol 11: 315–321. [CrossRef]
    [Google Scholar]
  21. Kimura M..( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;.[CrossRef]
    [Google Scholar]
  22. Kisker C., Kuper J., Van Houten B..( 2013;). Prokaryotic nucleotide excision repair. . Cold Spring Harb Perspect Biol 5: a012591. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E..( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol 38: 358–361. [CrossRef]
    [Google Scholar]
  24. Lee S. G., Yoon H. S., Bae H., Ha J., Pak H., Shin Y., Son S. W..( 2014;). Implication of ultraviolet B radiation exposure for non-melanoma skin cancer in Korea. . Mol Cell Toxicol 10: 91–94. [CrossRef]
    [Google Scholar]
  25. Lee J.-J., Kang M.-S., Joo E. S., Kim M. K., Im W.-T., Jung H.-Y., Srinivasan S..( 2015a;). Spirosoma montaniterrae sp. nov., an ultraviolet and gamma radiation-resistant bacterium isolated from mountain soil. . J Microbiol Biotechnol 53: 429–434. [CrossRef]
    [Google Scholar]
  26. Lee J. J., Srinivasan S., Lim S., Joe M., Im S., Kim M. K..( 2015b;). Deinococcus puniceus sp. nov., a bacterium isolated from soil-irradiated gamma radiation. . Curr Microbiol 70: 464–469. [CrossRef] [PubMed]
    [Google Scholar]
  27. Marmur J..( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3: 208–218. [CrossRef]
    [Google Scholar]
  28. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H..( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2: 233–241. [CrossRef]
    [Google Scholar]
  29. Oyaizu H., Stackebrandt E., Schleifer K. H., Ludwig W., Pohla H., Ito H., Hirata A., Oyaizu Y., Komagata K..( 1987;). A radiation-resistant rod-shaped bacterium, Deinobacter grandis gen. nov., sp. nov., with peptidoglycan containing ornithine. . Int J Syst Evol Microbiol 37: 62–67.
    [Google Scholar]
  30. Rainey F. A., Ray K., Ferreira M., Gatz B. Z., Nobre M. F., Bagaley D., Rash B. A., Park M. J., Earl A. M. et al.( 2005;). Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. . Appl Environ Microbiol 71: 5225–5235. [CrossRef] [PubMed]
    [Google Scholar]
  31. Ryan P. C., Fernanda. N., Patrick M. M., John R. B., Rafael. N. G., Christopher P. M., Milton S. C., Fred A. R..( 2008;). Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments. . Int J Syst Evol Microbiol 58: 1252–1258. [CrossRef] [PubMed]
    [Google Scholar]
  32. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Bio Evol 4: 406–425.
    [Google Scholar]
  33. Sasser M..( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, , MIDI Technical Note 101.. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  34. Selvam K., Duncan J. R., Tanaka M., Battista J. R..( 2013;). DdrA, DdrD, and PprA: components of UV and mitomycin C resistance in Deinococcus radiodurans R1. . PLoS One 8: e69007. [CrossRef] [PubMed]
    [Google Scholar]
  35. Shin Y. K., Lee J.-S., Chun C. O., Kim H.-J., Park Y.-H..( 1996;). Isoprenoid quinone profiles of the Leclercia adecarboxylata KCTC 1036T. . J Microbiol Biotechnol 6: 68–69.
    [Google Scholar]
  36. Son Y., Bae M. J., Lee C. G., Jo W. S., Kim S. D., Yang K., Jang H., Kim J. S..( 2014;). Treatment with granulocyte colony-stimulating factor aggravates thrombocytopenia in irradiated mice. . Mol Cell Toxicol 10: 311–317. [CrossRef]
    [Google Scholar]
  37. Srinivasan S., Kim M. K., Lim S., Joe M., Lee M..( 2012a;). Deinococcus daejeonensis sp. nov., isolated from sludge in a sewage disposal plant. . Int J Syst Evol Microbiol 62: 1265–1270. [CrossRef] [PubMed]
    [Google Scholar]
  38. Srinivasan S., Lee J. J., Lim S., Joe M., Kim M. K..( 2012b;). Deinococcus humi sp. nov., isolated from soil. . Int J Syst Evol Microbiol 62: 2844–2850. [CrossRef] [PubMed]
    [Google Scholar]
  39. Srinivasan S., Lee J. J., Lim S. Y., Joe M. H., Im S. H., Kim M. K..( 2015;). Deinococcus radioresistens sp. nov., a UV and gamma radiation-resistant bacterium isolated from mountain soil. . Antonie van Leeuwenhoek 107: 539–545. [CrossRef] [PubMed]
    [Google Scholar]
  40. Stackebrandt E., Goebel B. M..( 1994;). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Evol Microbiol 44: 846–849. [CrossRef]
    [Google Scholar]
  41. Tamaoka J., Komagata K..( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25: 125–128. [CrossRef]
    [Google Scholar]
  42. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  43. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al.( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37: 463–464.[CrossRef]
    [Google Scholar]
  44. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J..( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173: 697–703. [CrossRef] [PubMed]
    [Google Scholar]
  45. Wragg P., Randall L., Whatmore A. M..( 2014;). Comparison of Biolog GEN III MicroStation semi-automated bacterial identification system with matrix-assisted laser desorption ionization-time of flight mass spectrometry and 16S ribosomal RNA gene sequencing for the identification of bacteria of veterinary interest. . J Microbiol Methods 105: 16–21. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001473
Loading
/content/journal/ijsem/10.1099/ijsem.0.001473
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error