1887

Abstract

A chemo-organotrophic iodide (I)-oxidizing bacterial strain, C-3, isolated from natural gas brine of an iodine recovery facility in Kujukuri, Chiba, Japan, was characterized for representation of a novel species in the class . Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the nearest neighbours of strain C-3 were members of the genera , , and with 88–91 % sequence similarity. Cells of strain C-3 were aerobic, Gram-staining-negative, non-sporulating and rod-shaped (1.3–3.6 µm in length). Strain C-3 grew optimally at 30 °C, pH 7.5 and with 3 % NaCl (w/v). Iodide oxidation to form molecular iodine (I) was a unique trait for strain C-3, whereas the strain did not utilize iodide as a sole electron donor for chemolithoautotrophic growth. The major isoprenoid quinone was Q-10. The major cellular fatty acids were C 7 and C 5. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and unidentified aminolipids. The G+C content of the genomic DNA was 58.5 mol%. Iodide oxidation and the major cellular fatty acids composition distinguished strain C-3 from phylogenetically related bacteria. On the basis of the phenotypic features and the phylogenetic position, a novel genus and species are proposed for strain C-3 (=JCM 17843=LMG 28660), to be named gen. nov., sp. nov. We also propose to place the distinct sublineages of the genera gen. nov. and in the orders ord. nov. and ord. nov., respectively, because these genera are located far apart from the order and form the distinct lineage in the class .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001462
2016-12-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5016.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001462&mimeType=html&fmt=ahah

References

  1. Amachi S. 2008; Microbial contribution to global iodine cycling: volatilization, accumulation, reduction, oxidation, and sorption of iodine. Microbes Environ 23:269–276 [View Article][PubMed]
    [Google Scholar]
  2. Amachi S., Kamagata Y., Kanagawa T., Muramatsu Y. 2001; Bacteria mediate methylation of iodine in marine and terrestrial environments. Appl Environ Microbiol 67:2718–2722 [View Article][PubMed]
    [Google Scholar]
  3. Amachi S., Muramatsu Y., Akiyama Y., Miyazaki K., Yoshiki S., Hanada S., Kamagata Y., Ban-nai T., Shinoyama H., Fujii T. 2005; Isolation of iodide-oxidizing bacteria from iodide-rich natural gas brines and seawaters. Microb Ecol 49:547–557 [View Article][PubMed]
    [Google Scholar]
  4. Drews G. 1981; Rhodospirillum salexigens, spec. nov., an obligatory halophilic phototrophic bacterium. Arch Microbiol 130:325–327 [View Article]
    [Google Scholar]
  5. Edberg S. C., Pittman S., Singer J. M. 1977; Esculin hydrolysis by Enterobacteriaceae . J Clin Microbiol 6:111–116[PubMed]
    [Google Scholar]
  6. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  7. Hasegawa M., Kishino H., Yano T. A. 1985; Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174 [View Article][PubMed]
    [Google Scholar]
  8. Hetzel B. S. 1983; Iodine deficiency disorders (IDD) and their eradication. Lancet 2:1126–1129[PubMed] [CrossRef]
    [Google Scholar]
  9. Hetzel B. S., Mano M. T. 1989; A review of experimental studies of iodine deficiency during fetal development. J Nutr 119:145–151[PubMed]
    [Google Scholar]
  10. Huelsenbeck J. P., Ronquist F. 2001; MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755 [View Article][PubMed]
    [Google Scholar]
  11. Iino T., Ito K., Wakai S., Tsurumaru H., Ohkuma M., Harayama S. 2015; Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1. Appl Environ Microbiol 81:1839–1846 [View Article][PubMed]
    [Google Scholar]
  12. Imhoff J. F. 2005; Genus Incertae Sedis XXVI. Rhodothalassium Imhoff, Petri and Süling 1998, 797VP. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 2C pp. 228–229 Edited by Brenner D. J., Krieg N. R., Staley J. T. New York: Springer; [CrossRef]
    [Google Scholar]
  13. Imhoff J. F., Petri R., Süling J. 1998; Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the α-Proteobacteria: description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov., of Rhodospirillum molischianum to Phaeospirillum molischianum comb. nov., of Rhodospirillum salinarum to Rhodovibrio salexigens . Int J Syst Bacteriol 48:793–798 [CrossRef]
    [Google Scholar]
  14. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Meth Microbiol 19:161–208 [CrossRef]
    [Google Scholar]
  15. Kwon K. K., Lee H. S., Yang S. H., Kim S. J. 2005; Kordiimonas gwangyangensis gen. nov., sp. nov., a marine bacterium isolated from marine sediments that forms a distinct phyletic lineage (Kordiimonadales ord. nov.) in the ‘Alphaproteobacteria' . Int J Syst Evol Microbiol 55:2033–2037 [View Article][PubMed]
    [Google Scholar]
  16. Lechevalier M. P., De Bievre C., Lechevalier H. 1977; Chemotaxonomy of aerobic actinomycetes: Phospholipid composition. Biochem Syst Ecol 5:249–260 [View Article]
    [Google Scholar]
  17. Liu X., Li G., Lai Q., Sun F., Du Y., Shao Z. 2015; Emcibacter nanhaiensis gen. nov. sp. nov., isolated from sediment of the South China Sea. Antonie van Leeuwenhoek 107:893–900 [View Article][PubMed]
    [Google Scholar]
  18. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. 2004; ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  19. Math R. K., Jeong S. H., Jin H. M., Park M. S., Kim J. M., Jeon C. O. 2012; Kordiimonas aestuarii sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 62:3049–3054 [View Article][PubMed]
    [Google Scholar]
  20. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  21. Paramasivam N., Ben-Dov E., Arotsker L., Kushmaro A. 2013; Eilatimonas milleporae gen. nov., sp. nov., a marine bacterium isolated from the hydrocoral Millepora dichotoma . Int J Syst Evol Microbiol 63:1880–1884 [View Article][PubMed]
    [Google Scholar]
  22. Pickett M. J., Greenwood J. R., Harvey S. M. 1991; Tests for detecting degradation of gelatin: comparison of five methods. J Clin Microbiol 29:2322–2325[PubMed]
    [Google Scholar]
  23. Ronquist F., Huelsenbeck J. P. 2003; MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574 [View Article][PubMed]
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  25. Sasser M. 1990 Identification of Bacterie by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc;
    [Google Scholar]
  26. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  27. Teramoto M., Nishijima M. 2014; Temperatibacter marinus gen. nov., sp. nov., a mesophilic bacterium isolated from surface seawater and description of Temperatibacteraceae fam. nov. in the class Alphaproteobacteria . Int J Syst Evol Microbiol 64:3075–3080 [View Article][PubMed]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  29. Venkata Ramana V., Kalyana Chakravarthy S., Ramaprasad E. V., Thiel V., Imhoff J. F., Sasikala Ch., Ramana Ch. V. 2013; Emended description of the genus Rhodothalassium Imhoff et al., 1998 and proposal of Rhodothalassiaceae fam. nov. and Rhodothalassiales ord. nov. Syst Appl Microbiol 36:28–32 [View Article][PubMed]
    [Google Scholar]
  30. Wakai S., Ito K., Iino T., Tomoe Y., Mori K., Harayama S. 2014; Corrosion of iron by iodide-oxidizing bacteria isolated from brine in an iodine production facility. Microb Ecol 68:519–527 [View Article][PubMed]
    [Google Scholar]
  31. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886
    [Google Scholar]
  32. Xu X. W., Huo Y. Y., Bai X. D., Wang C. S., Oren A., Li S. Y., Wu M. 2011; Kordiimonas lacus sp. nov., isolated from a ballast water tank, and emended description of the genus Kordiimonas . Int J Syst Evol Microbiol 61:422–426 [View Article][PubMed]
    [Google Scholar]
  33. Yang S. H., Kim M. R., Seo H. S., Lee S. H., Lee J. H., Kim S. J., Kwon K. K. 2013; Description of Kordiimonas aquimaris sp. nov., isolated from seawater, and emended descriptions of the genus Kordiimonas Kwon et al. 2005 emend. Xu et al. 2011 and of its existing species. Int J Syst Evol Microbiol 63:298–302 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.001462
Loading
/content/journal/ijsem/10.1099/ijsem.0.001462
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error