1887

Abstract

A novel endophytic bacterium, strain 1DrF-4, isolated from rice roots, was characterized on the basis of its phenotypic characteristics and genotypic information. The novel strain was Gram-positive-staining, endospore-forming, facultatively anaerobic, motile and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 1DrF-4 formed a monophyletic clade within the genus . The most phylogenetically related species was KACC 17472, with which strain 1DrF-4 showed 16S rRNA gene sequence similarity of 95.2 %. 16S rRNA gene sequence similarities with type strains of other species of the genus were less than 95 %. The predominant cellular fatty acids were anteiso-C (61.1 %) and C (11.1 %), which is one of the characteristic traits of the genus The quinone system contained exclusively menaquinone MK-7. The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, glycolipid and an unknown phospholipid. The DNA G+C content was 50.16 mol%, which was within the range reported for species of the genus . Characterization by genotypic, chemotaxonomic and phenotypic analysis indicated that strain 1DrF-4 (=ACCC 19927=JCM 30486) represents a novel species of the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001459
2016-12-01
2021-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/5000.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001459&mimeType=html&fmt=ahah

References

  1. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie Van Leeuwenhoek 64:253–260[PubMed] [CrossRef]
    [Google Scholar]
  2. Beneduzi A., Ambrosini A., Passaglia L. M. 2012; Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051 [View Article][PubMed]
    [Google Scholar]
  3. Berge O., Guinebretière M. H., Achouak W., Normand P., Heulin T. 2002; Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52:607–616 [View Article][PubMed]
    [Google Scholar]
  4. Carro L., Flores-Félix J. D., Cerda-Castillo E., Ramírez-Bahena M. H., Igual J. M., Tejedor C., Velázquez E., Peix A. 2013; Paenibacillus endophyticus sp. nov., isolated from nodules of Cicer arietinum . Int J Syst Evol Microbiol 63:4433–4438 [View Article][PubMed]
    [Google Scholar]
  5. Dong X. Z., Cai M. Y. (editors) 2001; Determination of biochemical properties. In Manual for the Systematic Identification of General Bacteria pp 370–398 Beijing: Science Press (in Chinese);
    [Google Scholar]
  6. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  8. Jin H. J., Lv J., Chen S. F. 2011; Paenibacillus sophorae sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sophora japonica . Int J Syst Evol Microbiol 61:767–771 [View Article][PubMed]
    [Google Scholar]
  9. Kim B. C., Jeong W. J., Kim D. Y., Oh H. W., Kim H., Park D. S., Park H. M., Bae K. S. 2009; Paenibacillus pueri sp. nov., isolated from Pu'er tea. Int J Syst Evol Microbiol 59:1002–1006 [View Article][PubMed]
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  11. Kim T. S., Han J. H., Joung Y., Kim S. B. 2015a; Paenibacillus oenotherae sp. nov. and Paenibacillus hemerocallicola sp. nov., isolated from the roots of herbaceous plants. Int J Syst Evol Microbiol 65:2717–2725 [View Article][PubMed]
    [Google Scholar]
  12. Kim H. S., Srinivasan S., Lee S. S. 2015b; Paenibacillus alba nov., isolated from peat soil. Curr Microbiol 70:865–870 [View Article][PubMed]
    [Google Scholar]
  13. Kloepper J. W., Leong J., Teintze M., Schroth M. N. 1980; Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886 [View Article]
    [Google Scholar]
  14. Komagata K., Suzuki K. I 1988; 4 lipid and cell-wall analysis in bacterial systematics. Method Microbiol 19:161–207 [CrossRef]
    [Google Scholar]
  15. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  16. Lechevalier M. P., Lechevalier H. A. 1980; The chemotaxonomy of actinomycetes. In Actinomycete Taxonomy, Society for Industrial Microbiology pp 227–291 . Edited by Dietz A., Thayer D. W., Fairfax V. A. Utrecht: SIM Special Publication;
    [Google Scholar]
  17. Liu Y., Liu L., Qiu F., Schumann P., Shi Y., Zou Y., Zhang X., Song W. 2010; Paenibacillus hunanensis sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol 60:1266–1270 [View Article][PubMed]
    [Google Scholar]
  18. Liu Y., Zhai L., Wang R., Zhao R., Zhang X., Chen C., Cao Y., Cao Y., Xu T. et al. 2015; Paenibacillus zeae sp. nov., isolated from maize (Zea mays L.) seeds. Int J Syst Evol Microbiol 65:4533–4538 [View Article][PubMed]
    [Google Scholar]
  19. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  20. Ming H., Nie G. X., Jiang H. C., Yu T. T., Zhou E. M., Feng H. G., Tang S. K., Li W. J. 2012; Paenibacillus frigoriresistens sp. nov., a novel psychrotroph isolated from a peat bog in Heilongjiang, Northern China. Antonie Van Leeuwenhoek 102:297–305 [CrossRef]
    [Google Scholar]
  21. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  22. Moon J., Kim J. 2014; Isolation of paenibacillus pinesoli sp. nov. from forest soil in Gyeonggi-do, Korea. J Microbiol 52:273–277 [View Article][PubMed]
    [Google Scholar]
  23. Oh H. W., Kim B. C., Lee K. H., Kim D. Y., Park D. S., Park H. M., Bae K. S. 2008; Paenibacillus camelliae sp. nov., isolated from fermented leaves of Camellia sinensis. J Microbiol 46:530–534 [View Article][PubMed]
    [Google Scholar]
  24. Ruan Z., Wang Y., Song J., Jiang S., Wang H., Li Y., Zhao B., Jiang R., Zhao B. 2014; Kurthia huakuii sp. nov., isolated from biogas slurry, and emended description of the genus Kurthia. Int J Syst Evol Microbiol 64:518–521 [View Article][PubMed]
    [Google Scholar]
  25. Rzhetsky A., Nei M. 1992; A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9:945–967
    [Google Scholar]
  26. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  27. Sasser M. 1990 Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101. Newark, DE: MIDI Inc;
    [Google Scholar]
  28. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156 [CrossRef]
    [Google Scholar]
  29. Smerda J., Sedlácek I., Pácová Z., Durnová E., Smísková A., Havel L. 2005; Paenibacillus mendelii sp. nov., from surface-sterilized seeds of Pisum sativum L. Int J Syst Evol Microbiol 55:2351–2354 [View Article][PubMed]
    [Google Scholar]
  30. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  31. Wang Y., Shi Y., Li B., Shan C., Ibrahim M., Jabeen A., Xie G., Sun G. 2012; Phosphate solubilization of Paenibacillus polymyxa and Paenibacillus macerans from mycorrhizal and non-mycorrhizal cucumber plants. Afr J Microbiol Res 6:4567–4573
    [Google Scholar]
  32. Zhang X., Sun L., Ma X., Sui X. H., Jiang R. 2011; Rhizobium pseudoryzae sp. nov., isolated from the rhizosphere of rice. Int J Syst Evol Microbiol 61:2425–2459 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001459
Loading
/content/journal/ijsem/10.1099/ijsem.0.001459
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error