1887

Abstract

Three thermo-tolerant halophilic archaeal strains, SR-441, SR-412 and SR-188, were isolated from commercial salt samples. Cells were non-motile pleomorphic rod-shaped, and stained Gram-negative. Colonies were pink-pigmented. The three strains were able to grow with 1.7–4.6 M NaCl (optimum, 2.5 M), at pH 6.5–9.0 (optimum, pH 8.0) and at 35–60 °C (optimum, 45 °C). The orthologous 16S rRNA gene sequence similarities amongst the three strains were 98.8–99.3 %, and the level of DNA–DNA relatedness was 71–74 and 72–75 % (reciprocally). The closest relative was Halopiger aswanensis JCM 11628 with 98.6 %–99.1 % similarity in the orthologous 16S rRNA gene sequences, followed by two more Halopiger species, Halopiger xanaduensis JCM 14033 (98.5 %–99.1 %) and Halopiger salifodinae JCM 9578 (95.5 %–95.6 %). DNA–DNA relatednesses between the three strains and H. aswanensis JCM 11628 and H. xanaduensis JCM 14033 were 61 and 54 %, respectively. The polar lipids of the three novel strains were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, and bis-sulfated diglycosyl archaeol-1. The most distinctive feature of the three strains was the ability to grow at 60 °C, while the maximum growth temperature of H. aswanensis is 55 °C. Based on phenotypic and phylogenetic analyses, the isolates are considered to represent a novel species of the genus Halopiger , for which the name Halopiger thermotolerans sp. nov. is proposed. The type strain is SR-441 (=JCM 19583=KCTC 4248) isolated from solar salt produced in Australia. SR-412 (=JCM 19582) and SR-188 (=JCM 19581) isolated from commercial salt samples are additional strains of the species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001455
2016-12-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/4975.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001455&mimeType=html&fmt=ahah

References

  1. Dennis P. P., Ziesche S., Mylvaganam S..( 1998;). Transcription analysis of two disparate rRNA operons in the halophilic archaeon Haloarcula marismortui. . J Bacteriol 180: 4804–4813.[PubMed]
    [Google Scholar]
  2. Dussault H. P..( 1955;). An improved technique for staining red halophilic bacteria. . J Bacteriol 70: 484–485.[PubMed]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E..( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39: 224–229. [CrossRef]
    [Google Scholar]
  4. Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  5. Fitch W. M..( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20: 406–416. [CrossRef]
    [Google Scholar]
  6. Gonzalez C., Gutierrez C., Ramirez C..( 1978;). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24: 710–715. [CrossRef] [PubMed]
    [Google Scholar]
  7. Gupta R. S., Naushad S., Baker S..( 2015;). Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. . Int J Syst Evol Microbiol 65: 1050–1069. [CrossRef] [PubMed]
    [Google Scholar]
  8. Gutiérrez M. C., Castillo A. M., Kamekura M., Xue Y., Ma Y., Cowan D. A., Jones B. E., Grant W. D., Ventosa A..( 2007;). Halopiger xanaduensis gen. nov., sp. nov., an extremely halophilic archaeon isolated from saline Lake Shangmatala in Inner Mongolia, China. . Int J Syst Evol Microbiol 57: 1402–1407. [CrossRef] [PubMed]
    [Google Scholar]
  9. Hezayen F. F., Gutiérrez M. C., Steinbüchel A., Tindall B. J., Rehm B. H..( 2010;). Halopiger aswanensis sp. nov., a polymer-producing and extremely halophilic archaeon isolated from hypersaline soil. . Int J Syst Evol Microbiol 60: 633–637. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kamekura M..( 1993;). Lipids of extreme halophiles. . In The Biology of Halophilic Bacteria , pp. 135–161. Edited by Vreeland R. H., Hochstein L. I.. Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  11. Kumar S., Stecher G., Tamura K..( 2016;). mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. . Mol Biol Evol 33: 1870–1874. [CrossRef] [PubMed]
    [Google Scholar]
  12. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al.( 2007;). clustal w and clustal x version 2.0. . Bioinformatics 23: 2947–2948. [CrossRef] [PubMed]
    [Google Scholar]
  13. Minegishi H., Echigo A., Nagaoka S., Kamekura M., Usami R..( 2010a;). Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. . Int J Syst Evol Microbiol 60: 2513–2516. [CrossRef] [PubMed]
    [Google Scholar]
  14. Minegishi H., Kamekura M., Itoh T., Echigo A., Usami R., Hashimoto T..( 2010b;). Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B' (rpoB') gene. . Int J Syst Evol Microbiol 60: 2398–2408. [CrossRef] [PubMed]
    [Google Scholar]
  15. Minegishi H., Kamekura M., Kitajima-Ihara T., Nakasone K., Echigo A., Shimane Y., Usami R., Itoh T., Ihara K..( 2012;). Gene orders in the upstream of 16S rRNA genes divide genera of the family Halobacteriaceae into two groups. . Int J Syst Evol Microbiol 62: 188–195. [CrossRef] [PubMed]
    [Google Scholar]
  16. Mylvaganam S., Dennis P. P..( 1992;). Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui. . Genetics 130: 399–410.[PubMed]
    [Google Scholar]
  17. Oren A., Ventosa A., Grant W. D..( 1997;). Proposed minimal standards for description of new taxa in the order Halobacteriales. . Int J Syst Bacteriol 47: 233–238. [CrossRef]
    [Google Scholar]
  18. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  19. Silvestro D., Michalak I..( 2012;). raxmlGUI: a graphical front-end for RAxML. . Org Divers Evol 12: 335–337. [CrossRef]
    [Google Scholar]
  20. Smibert R. M., Krieg N. R..( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology , pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  21. Stackebrandt E., Goebel B. E..( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16s rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Evol Microbiol 44: 846–849. [CrossRef]
    [Google Scholar]
  22. Stamatakis A., Ludwig T., Meier H..( 2005;). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. . Bioinformatics 21: 456–463. [CrossRef] [PubMed]
    [Google Scholar]
  23. Tamaoka J., Komagata K..( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25: 125–128. [CrossRef]
    [Google Scholar]
  24. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I, Moore L. H., Moore W. E. C., Murray R. G. E. et al.( 1987;). International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37: 463–464.[CrossRef]
    [Google Scholar]
  25. Yang X., Cui H. L..( 2012;). Halomicrobium zhouii sp. nov., a halophilic archaeon from a marine solar saltern. . Int J Syst Evol Microbiol 62: 1235–1240. [CrossRef] [PubMed]
    [Google Scholar]
  26. Zhang W. Y., Meng Y., Zhu X. F., Wu M..( 2013;). Halopiger salifodinae sp. nov., an extremely halophilic archaeon isolated from a salt mine. . Int J Syst Evol Microbiol 63: 3563–1240. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001455
Loading
/content/journal/ijsem/10.1099/ijsem.0.001455
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error