1887

Abstract

A Gram-staining-negative, rod-shaped, motile by gliding and facultative anaerobic bacterial strain, YS-25, was isolated from a sludge of a manganese mine. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain YS-25 formed a single branch within the strains of the family Sphingobacteriaceae and showed low similarities to Pedobacter arcticus CCTCC AB 2010223 (91.7 %), ‘ Pedobacter zeaxanthinifaciens ’ TDMA-5 (91.5 %), Pedobacter terricola DS-45 (90.9 %), Pedobacter ureilyticus THG-T11 (90.9 %), Pseudopedobacter beijingensis MCCC 1A01299 (90.8 %) and Pedobacter heparinus CCTCC AB 209030 (88.5 %). Strain YS-25 had some unique physiological and biochemical characteristics: facultative anaerobic, able to hydrolyse Tween 40, positive for cystine arylamidase and negative for mannose assimilation and β-galactosidase. The polar lipids of strain YS-25 were phosphatidylethanolamine, aminolipid, two unknown lipids and two glycolipids. The presence of glycolipids and absence of sphingolipid were different from the Pedobacter and Pseudopedobacter strains. The major fatty acids (>5 %) were iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c), unknown ECL 13.565, iso-C17 : 0 3-OH, iso-C17 : 1 ω9c and anteiso-C15 : 0. The genomic DNA G+C content was 42.0 mol%, and the only respiratory quinone was menaquinone 7. On the basis of polyphasic taxonomic analyses, strain YS-25 is considered to represent a novel genus and species, for which the name Pelobium manganitolerans gen. nov., sp. nov. is proposed. The type strain is YS-25 (=KCTC 52203=CCTCC AB 2016051).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001451
2016-12-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/4954.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001451&mimeType=html&fmt=ahah

References

  1. Bernardet J. F., Nakagawa Y., Holmes B..( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52: 1049–1070. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bligh E. G., Dyer W. J..( 1959;). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37: 911–917. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cao J., Lai Q., Li G., Shao Z..( 2014;). Pseudopedobacter beijingensis gen. nov., sp. nov., isolated from coking wastewater activated sludge, and reclassification of Pedobacter saltans as Pseudopedobacter saltans comb. nov. . Int J Syst Evol Microbiol 64: 1853–1858. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cowan S. T., Steel K. J..( 1965;). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  5. Da X., Jiang F., Chang X., Ren L., Qiu X., Kan W., Zhang Y., Deng S., Peng F..( 2015;). Pedobacter ardleyensis sp. nov., isolated from soil of the Ardley Island, South Shetland Islands in Antarctica. . Int J Syst Evol Microbiol 65: 3841–3846.[CrossRef]
    [Google Scholar]
  6. Dong X. Z., Cai M. Y..( 2001;). Determinative Manual for Routine Bacteriology. Beijing:: Scientific Press;.
    [Google Scholar]
  7. Dussault H. P..( 1955;). An improved technique for staining red halophilic bacteria. . J Bacteriol 70: 484–485.[PubMed]
    [Google Scholar]
  8. Fan H., Su C., Wang Y., Yao J., Zhao K., Wang Y., Wang G..( 2008;). Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. . J Appl Microbiol 105: 529–539. [CrossRef] [PubMed]
    [Google Scholar]
  9. Felsenstein J..( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  10. Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  11. Gallego V., García M. T., Ventosa A..( 2006;). Pedobacter aquatilis sp. nov., isolated from drinking water, and emended description of the genus Pedobacter. . Int J Syst Evol Microbiol 56: 1853–1858. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hugh R., Leifson E..( 1953;). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. . J Bacteriol 66: 24–26.[PubMed]
    [Google Scholar]
  13. Hwang C. Y., Choi D. H., Cho B. C..( 2006;). Pedobacter roseus sp. nov., isolated from a hypertrophic pond, and emended description of the genus Pedobacter. . Int J Syst Evol Microbiol 56: 1831–1836. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al..( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kook M., Park Y., Yi T. H..( 2014;). Pedobacter jejuensis sp. nov., isolated from soil of a pine grove, and emended description of the genus Pedobacter. . Int J Syst Evol Microbiol 64: 1789–1794. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kroppenstedt R. M..( 1985;). Fatty acid and menaquinone analysis of actinomycetes and related organisms. . In Chemical Methods in Bacterial Systematics (SAB Technical Series no. 20), pp. 173–199. Edited by Goodfellow M., Minnikin D. E.. London:: Academic Press;.
    [Google Scholar]
  17. Luo G., Shi Z., Wang G..( 2012;). Lysobacter arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from iron-mined soil. . Int J Syst Evol Microbiol 62: 1659–1665. [CrossRef] [PubMed]
    [Google Scholar]
  18. Margesin R., Zhang D. C..( 2013;). Pedobacter ruber sp. nov., a psychrophilic bacterium isolated from soil. . Int J Syst Evol Microbiol 63: 339–344. [CrossRef] [PubMed]
    [Google Scholar]
  19. Nei M., Kumar S..( 2000;). Molecular Evolution and Phylogenetics. New York:: Oxford University Press;.
    [Google Scholar]
  20. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  21. Sasser M..( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note, 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  22. Smibert R. M., Krieg N. R..( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp.607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  23. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J..( 1998;). Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. . Int J Syst Bacteriol 48: 165–177. [CrossRef] [PubMed]
    [Google Scholar]
  24. Tamaoka J., Komagata K..( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25: 125–128. [CrossRef]
    [Google Scholar]
  25. Tamura K., Nei M..( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10: 512–526.[PubMed]
    [Google Scholar]
  26. Tamura K., Nei M., Kumar S..( 2004;). Prospects for inferring very large phylogenies by using the neighbor-joining method. . Proc Natl Acad Sci USA 101: 11030–11035. [CrossRef]
    [Google Scholar]
  27. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  28. Tindall B. J..( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13: 128–130. [CrossRef]
    [Google Scholar]
  29. Tindall B. J..( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66: 199–202. [CrossRef]
    [Google Scholar]
  30. Tindall B. J., Sikorski J., Smibert R. M., Kreig N. R..( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R.. Washington, DC:: ASM Press;.
    [Google Scholar]
  31. Vanparys B., Heylen K., Lebbe L., De Vos P..( 2005;). Pedobacter caeni sp. nov., a novel species isolated from a nitrifying inoculum. . Int J Syst Evol Microbiol 55: 1315–1318. [CrossRef] [PubMed]
    [Google Scholar]
  32. Zhou Z., Jiang F., Wang S., Peng F., Dai J., Li W., Fang C..( 2012;). Pedobacter arcticus sp. nov., a facultative psychrophile isolated from Arctic soil, and emended descriptions of the genus Pedobacter, Pedobacter heparinus, Pedobacter daechungensis, Pedobacter terricola, Pedobacter glucosidilyticus and Pedobacter lentus. . Int J Syst Evol Microbiol 62: 1963–1969. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001451
Loading
/content/journal/ijsem/10.1099/ijsem.0.001451
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error