1887

Abstract

In this work we revise the taxonomic status of the Lotus-nodulating strains MAFF 303099 and R7A isolated in Japan and New Zealand, respectively. Their 16S rRNA gene sequences are identical and show 98.0, 99.7, 99.8 and 99.9 % similarity values with respect to Mesorhizobium loti NZP 2213, M. jarvisii ATCC 33669, M. huakuii USDA 4779 (=CCBAU 2609) and M. erdmanii USDA 3471, respectively. The analysis of recA and glnII gene sequeces showed that M. jarvisii ATCC 33669 and M. huakuii USDA 4779 (=CCBAU 2609) are the most closely related strains to MAFF 303099 and R7A, with similarity values suggesting that these two strains belong to a different species for which MAFF 303099 is selected as the type strain. The DNA–DNA relatedness values between strain MAFF 303099 and its closest phylogenetic relatives ranged from 53 to 60 % in average. Strains MAFF 303099 and R7A presented slight differences in the proportions of C18 : 1ω7c 11-methyl and C19 : 0 cyclo ω8c fatty acids with respect to M. jarvisii ATCC 33669 and M. huakuii USDA 4779, and also in several phenotypic characteristics. Therefore, we propose the reclassification of these two strains into a novel species named Mesorhizobium japonicum sp. nov., with the type strain being MAFF 303099 (=LMG 29417=CECT 9101).

Keyword(s): Lotus , Mesorhizobium and Taxonomy
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001448
2016-12-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/4936.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001448&mimeType=html&fmt=ahah

References

  1. Beringer J. E..( 1974;). R factor transfer in Rhizobium leguminosarum. . J Gen Microbiol 84: 188–198. [CrossRef] [PubMed]
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E..( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39: 224–229. [CrossRef]
    [Google Scholar]
  3. Kaneko T., Nakamura Y., Sato S., Asamizu E., Kato T., Sasamoto S., Watanabe A., Idesawa K., Ishikawa A. et al.( 2000;). Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. . DNA Res 7: 331–338. [CrossRef] [PubMed]
    [Google Scholar]
  4. Kelly S., Sullivan J., Ronson C., Tian R., Bräu L., Munk C., Goodwin L., Han C., Woyke T. et al.( 2014;). Genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain R7A. . Stand Genomic Sci 9: 6. [CrossRef] [PubMed]
    [Google Scholar]
  5. Kimura M..( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  6. Martínez-Hidalgo P., Ramírez-Bahena M. H., Flores-Félix J. D., Rivas R., Igual J. M., Mateos P. F., Martínez-Molina E., León-Barrios M., Peix Á., Velázquez E..( 2015; Revision of the taxonomic status of type strains of Mesorhizobium loti and reclassification of strain USDA 3471T as Mesorhizobium erdmanii sp. nov. and ATCC 33669T Mesorhizobium jarvisii sp. nov. . Int J Syst Evol Microbiol 65: 1703–1708. [CrossRef] [PubMed]
    [Google Scholar]
  7. Ormeño-Orrillo E., Servín-Garcidueñas L. E., Rogel M. A., González V., Peralta H., Mora J., Martínez-Romero J., Martínez-Romero E..( 2015;). Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. . Syst Appl Microbiol 38: 287–291. [CrossRef] [PubMed]
    [Google Scholar]
  8. Peix A., Ramírez-Bahena M. H., Velázquez E., Bedmar E. J..( 2015;). Bacterial associations with legumes. . Crit Rev Plant Sci 34: 17–42. [CrossRef]
    [Google Scholar]
  9. Ramírez-Bahena M. H., Hernández M., Peix A., Velázquez E., León-Barrios M..( 2012;). Mesorhizobial strains nodulating Anagyris latifolia and Lotus berthelotii in Tamadaya ravine (Tenerife, Canary Islands) are two symbiovars of the same species, Mesorhizobium tamadayense sp. nov. . Syst Appl Microbiol 35: 334–341. [CrossRef] [PubMed]
    [Google Scholar]
  10. Rogers J. S., Swofford D. L..( 1998;). A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. . Syst Biol 47: 77–89.[PubMed] [CrossRef]
    [Google Scholar]
  11. Saeki K., Kouchi H..( 2000;). The Lotus symbiont, Mesorhizobium loti: molecular genetic techniques and application. . J Plant Res 113: 457–465. [CrossRef]
    [Google Scholar]
  12. Saitou N., Nei M..( 1987;). A neighbour-joining method: a new method for reconstructing phylogenetics trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  13. Sasser M..( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  14. Sullivan J. T., Patrick H. N., Lowther W. L., Scott D. B., Ronson C. W..( 1995;). Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. . Proc Natl Acad Sci U S A 92: 8985–8989. [CrossRef] [PubMed]
    [Google Scholar]
  15. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  16. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G..( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acid Res 25: 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  17. Turner S. L., Zhang X. X., Li F. D., Young J. P..( 2002;). What does a bacterial genome sequence represent? mis-assignment of MAFF 303099 to the genospecies Mesorhizobium loti. . Microbiology 148: 3330–3331. [CrossRef] [PubMed]
    [Google Scholar]
  18. Varghese N. J., Mukherjee S., Ivanova N., Konstantinidis K. T., Mavrommatis K., Kyrpides N. C., Pati A..( 2015;). Microbial species delineation using whole genome sequences. . Nucleic Acids Res 43: 6761–6771. [CrossRef] [PubMed]
    [Google Scholar]
  19. Vincent J. M..( 1970;). Manual for the practical study of the RootNodule bacteria. . In IBP Handbook,vol. 15. Oxford:: Blackwell;.
    [Google Scholar]
  20. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al.( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Evol Microbiol 37: 463–464. [CrossRef]
    [Google Scholar]
  21. Willems A., Doignon-Bourcier F., Goris J., Coopman R., de Lajudie P., De Vos P., Gillis M..( 2001;). DNA–DNA hybridization study of Bradyrhizobium strains. . Int J Syst Evol Microbiol 51: 1315–1322. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001448
Loading
/content/journal/ijsem/10.1099/ijsem.0.001448
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error