1887

Abstract

A novel Gram-stain-negative, strictly aerobic, non-motile, rod-shaped, capsule-forming bacterium, designated strain YLT33, that formed orange-red colonies was isolated from mountain cliff soil from Enshi Grand Canyon, southwest China. Growth occurred at 4–35 °C (optimum 28 °C) and at pH 6.0–10.0 (optimum 7.0). It showed maximum (99.3 %) 16S rRNA gene sequence similarity and formed a monophyletic clade with Sphingoaurantiacus polygranulatus MC 3718 (=CCTCC 2014274). The DNA G+C content was 68.5 mol% and strain YLT33 showed a 50.5 % DNA–DNA relatedness value to S. polygranulatus MC 3718. The major fatty acids (>5 %) were C17 : 1ω6c (40.7 %), C15 : 0 (10.4 %), C15 : 1ω6c (9.4 %), summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH; 8.6 %), C17 : 1ω8c (7.1 %), C18 : 1ω7c (6.1 %), and C15 : 0 2-OH (5.7 %). Ubiquinone-10 was the sole respiratory quinone. The polar lipids of strain YLT33 contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, sphingoglycolipid, two unknown glycolipids and one unknown phospholipid. Carotenoids were present in cells. Homospermidine was the major polyamine. In addition, strain YLT33 showed obvious differences from the closely related strain S. polygranulatus MC 3718 with respect to major polar lipids, fatty acids and other morphological, physiological and biochemical characteristics. These results from polyphasic taxonomic studies reveal that strain YLT33 represents a novel species of the genus Sphingoaurantiacus , for which the name Sphingoaurantiacus capsulatus sp. nov. is proposed. The type strain is YLT33 (=CCTCC AB 2015150=KCTC 42644).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001447
2016-12-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/12/4930.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001447&mimeType=html&fmt=ahah

References

  1. Busse J., Auling G..( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11: 1–8. [CrossRef]
    [Google Scholar]
  2. Busse H.-J., Bunka S., Hensel A., Lubitz W..( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47: 698–708. [CrossRef]
    [Google Scholar]
  3. Collins M. D., Jones D..( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. . J Appl Bacteriol 48: 459–470. [CrossRef]
    [Google Scholar]
  4. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E..( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100: 221–230. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cowan S. T., Steel K. J..( 1965;). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A..( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12: 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  7. Dong X. Z., Cai M. Y..( 2001;). Determinative Manual for Routine Bacteriology. Beijing:: Scientific Press;.
    [Google Scholar]
  8. Dussault H. P..( 1955;). An improved technique for staining red halophilic bacteria. . J Bacteriol 70: 484–485.[PubMed]
    [Google Scholar]
  9. Fan H., Su C., Wang Y., Yao J., Zhao K., Wang Y., Wang G..( 2008;). Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. . J Appl Microbiol 105: 529–539. [CrossRef] [PubMed]
    [Google Scholar]
  10. Felföldi T., Vengring A., Márialigeti K., András J., Schumann P., Tóth E. M..( 2014;). Hephaestia caeni gen. nov., sp. nov., a novel member of the family Sphingomonadaceae isolated from activated sludge. . Int J Syst Evol Microbiol 64: 738–744. [CrossRef] [PubMed]
    [Google Scholar]
  11. Felsenstein J..( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  12. Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  13. Fitch W. M..( 1971;). Towards defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20: 406–416.[CrossRef]
    [Google Scholar]
  14. Francis I. M., Jochimsen K. N., De Vos P., van Bruggen A. H..( 2014;). Reclassification of rhizosphere bacteria including strains causing corky root of lettuce and proposal of Rhizorhapis suberifaciens gen. nov., comb. nov., Sphingobium mellinum sp. nov., Sphingobium xanthum sp. nov. and Rhizorhabdus argentea gen. nov., sp. nov. . Int J Syst Evol Microbiol 64: 1340–1350. [CrossRef] [PubMed]
    [Google Scholar]
  15. Fukuda W., Chino Y., Araki S., Kondo Y., Imanaka H., Kanai T., Atomi H., Imanaka T..( 2014;). Polymorphobacter multimanifer gen. nov., sp. nov., a polymorphic bacterium isolated from Antarctic white rock. . Int J Syst Evol Microbiol 64: 2034–2040. [CrossRef] [PubMed]
    [Google Scholar]
  16. Gich F., Overmann J..( 2006;). Sandarakinorhabdus limnophila gen. nov., sp. nov., a novel bacteriochlorophyll a-containing, obligately aerobic bacterium isolated from freshwater lakes. . Int J Syst Evol Microbiol 56: 847–854. [CrossRef] [PubMed]
    [Google Scholar]
  17. Hugh R., Leifson E..( 1953;). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. . J Bacteriol 66: 24–26.[PubMed]
    [Google Scholar]
  18. Kämpfer P., Busse H. J., Rosséllo-Mora R., Kjellin E., Falsen E..( 2004;). Rhodovarius lipocyclicus gen. nov. sp. nov., a new genus of the alpha-1 subclass of the Proteobacteria. . Syst Appl Microbiol 27: 511–516. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kim M., Kang O., Zhang Y., Ren L., Chang X., Jiang F., Fang C., Zheng C., Peng F..( 2016;). Sphingoaurantiacus polygranulatus gen. nov., sp. nov., isolated from high-Arctic tundra soil, and emended descriptions of the genera Sandarakinorhabdus, Polymorphobacter and Rhizorhabdus and the species Sandarakinorhabdus limnophila, Rhizorhabdus argentea and Sphingomonas wittichii. . Int J Syst Evol Microbiol 66: 91–100. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kimura M..( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  22. Kroppenstedt R. M..( 1985;). Fatty acid and menaquinone analysis of actinomycetes and related organisms. . In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series),vol. 20. pp. 173–199. Edited by Goodfellow M., Minnikin D. E.. New York:: Academic Press;.
    [Google Scholar]
  23. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al.( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23: 2947–2948. [CrossRef]
    [Google Scholar]
  24. Logan N. A., Berge O., Bishop A. H., Busse H. J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L. et al.( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59: 2114–2121. [CrossRef] [PubMed]
    [Google Scholar]
  25. Maruyama T., Park H. D., Ozawa K., Tanaka Y., Sumino T., Hamana K., Hiraishi A., Kato K..( 2006;). Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. . Int J Syst Evol Microbiol 56: 85–89. [CrossRef] [PubMed]
    [Google Scholar]
  26. Minnikin D. E., Collins M. D., Goodfellow M..( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47: 87–95. [CrossRef]
    [Google Scholar]
  27. Ryu E..( 1938;). On the Gram-differentiation of bacteria by the simplest method. . J Jpn Soc Vet Sci 17: 205–207. [CrossRef]
    [Google Scholar]
  28. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  29. Sasser M..( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  30. Smibert R. M., Krieg N. R..( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654 . Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  31. Tamaoka J., Komagata K..( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25: 125–128. [CrossRef]
    [Google Scholar]
  32. Tamaoka J., Katayama-Fujimura Y., Kuraishi H..( 1983;). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. . J Appl Bacteriol 54: 31–36. [CrossRef]
    [Google Scholar]
  33. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al.( 1987;). International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37: 463–464.[CrossRef]
    [Google Scholar]
  35. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H..( 1990;). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. . Microbiol Immunol 34: 99–119. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001447
Loading
/content/journal/ijsem/10.1099/ijsem.0.001447
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error