1887

Abstract

A mesophilic, hydrogenotrophic methanogen, designated strain MobH, was isolated from sediments derived from deep sedimentary, natural-gas-bearing aquifers in Japan. Strain MobH utilized H2/CO2 or formate, but not ethanol, 1-propanol, 2-propanol, 2-butanol or cyclopentanol, for growth and methane production. In addition, acetate and tungsten were required for growth. Yeast extract stimulated the growth, but was not required. The cells were weakly motile with multiple flagella, presented as a curved-rod-shaped (0.8×2.0 µm) and occurred singly or in pairs. Strain MobH grew at 15–40 °C (optimum 35 °C) and at pH 5.9–7.9 (optimum pH 7.0–7.5). The sodium chloride range for growth was 0–5.8 % (optimum 2 %). The G+C content of the genomic DNA was 37.6 mol%. In the phylogenetic tree based on the 16S rRNA gene sequences, strain MobH clustered together with Methanomicrobium mobile (95.4 % in sequence similarity), and formed a distinct clade from Methanolacinia petrolearia SEBR 4847 (95.6 %) and Methanolacinia paynteri G-2000 (95.4 %). The two species of the genus Methanolacinia utilized 2-propanol, whereas strain MobH and Methanomicrobium mobile , the sole species of the genus Methanomicrobium , do not. Based on phenotypic and phylogenetic features, we propose a novel species for the isolate with the name, Methanomicrobium antiquum sp. nov. The type strain is MobH (=DSM 21220=NBRC 104160).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001444
2016-11-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4873.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001444&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S..( 1979;). Methanogens: reevaluation of a unique biological group. . Microbiol Rev43:260–296.[PubMed]
    [Google Scholar]
  2. Boone D. R., Whitman W. B..( 1988;). Proposal of minimal standards for describing new taxa of methanogenic bacteria. . Int J Syst Bacteriol38:212–219. [CrossRef]
    [Google Scholar]
  3. Boone D. R., Whitman W. B., Koga Y..( 2001;). Family I. Methanomicrobiaceae Barker 1956, 15, AL emend. Balch and Wolfe in Balch, Balch and Wolfe in Balch, Fox, Magrum, Woese and Wolfe 1979, 268. . In Bergey’s Manual of Systematic Bacteriology: The Archaea and the Deeply Branching and Phototrophic Bacteria, , 2nd edn.,vol. 1 pp. 247–261. Edited by Boone D. R., Castenholz R. W., Garrity G. M.. New York:: Springer;.
    [Google Scholar]
  4. Göker M., Lu M., Fiebig A., Nolan M., Lapidus A., Tice H., Del Rio T. G., Cheng J. F., Han C. et al.( 2014;). Genome sequence of the mud-dwelling archaeon Methanoplanus limicola type strain (DSM 2279T), reclassification of Methanoplanus petrolearius as Methanolacinia petrolearia and emended descriptions of the genera Methanoplanus and Methanolacinia. . Stand Genomic Sci9:1076–1088. [CrossRef][PubMed]
    [Google Scholar]
  5. Igari S., Sakata S..( 1989;). Origin of natural gas of dissolved-in-water type in Japan inferred from chemical and isotopic compositions-occurrence of dissolved gas of thermogenic origin. . Geochem J23:139–142. [CrossRef]
    [Google Scholar]
  6. Kamagata Y..( 2015;). Keys to cultivating uncultured microbes: elaborate enrichment strategies and resuscitation of dormant cells. . Microb Environ30:289–290. [CrossRef][PubMed]
    [Google Scholar]
  7. Kamagata Y., Mikami E..( 1991;). Isolation and characterization of a novel thermophilic Methanosaeta strain. . Int J Syst Bacteriol41:191–196. [CrossRef]
    [Google Scholar]
  8. Katayama T., Kamagata Y..( 2016;). Cultivation of methanogens. . In Hydrocarbon and Lipid Microbiology Protocols, Isolation and Cultivation, pp. 1–19. Edited by McGenity T. J., Timmis K. N., Nogales B.. Berlin:: Springer-Verlag;.
    [Google Scholar]
  9. Katayama T., Yoshioka H., Mochimaru H., Meng X. Y., Muramoto Y., Usami J., Ikeda H., Kamagata Y., Sakata S..( 2014;). Methanohalophilus levihalophilus sp. nov., a slightly halophilic, methylotrophic methanogen isolated from natural gas-bearing deep aquifers, and emended description of the genus Methanohalophilus. . Int J Syst Evol Microbiol64:2089–2093. [CrossRef][PubMed]
    [Google Scholar]
  10. Katayama T., Yoshioka H., Muramoto Y., Usami J., Fujiwara K., Yoshida S., Kamagata Y., Sakata S..( 2015;). Physicochemical impacts associated with natural gas development on methanogenesis in deep sand aquifers. . ISME J9:436–446. [CrossRef][PubMed]
    [Google Scholar]
  11. Kunisue S., Mita I., Waki F..( 2002;). Relationship between subsurface geology and productivity of natural gas and iodine in the Mobara gas field, Boso Peninsula, central Japan. . J Jpn Assoc Pet Tech67:83–96. [CrossRef]
    [Google Scholar]
  12. Mochimaru H., Uchiyama H., Yoshioka H., Imachi H., Hoaki T., Tamaki H., Nakamura K., Sekiguchi Y., Kamagata Y..( 2007;). Methanogen diversity in deep subsurface gas-associated water at the Minami-Kanto gas field in Japan. . Geomicrobiol J24:93–100. [CrossRef]
    [Google Scholar]
  13. Mochimaru H., Tamaki H., Hanada S., Imachi H., Nakamura K., Sakata S., Kamagata Y..( 2009;). Methanolobus profundi sp. nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field. . Int J Syst Evol Microbiol59:714–718. [CrossRef][PubMed]
    [Google Scholar]
  14. Nakamura K., Terada T., Sekiguchi Y., Shinzato N., Meng X. Y., Enoki M., Kamagata Y..( 2006;). Application of pseudomurein endoisopeptidase to fluorescence in situ hybridization of methanogens within the family Methanobacteriaceae. . Appl Environ Microbiol72:6907–6913. [CrossRef][PubMed]
    [Google Scholar]
  15. Ollivier B., Cayol J.-L., Patel B. K. C., Magot M., Fardeau M.-L., Garcia J.-L..( 1997;). Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil-producing well. . FEMS Microbiol Lett147:51–56. [CrossRef][PubMed]
    [Google Scholar]
  16. Paynter M. J. B., Hungate R. E..( 1968;). Characterization of Methanobacterium mobilis, sp. n., isolated from the bovine rumen. . J Bacteriol95:1943–1951.
    [Google Scholar]
  17. Rivard C. J., Henson J. M., Thomas M. V., Smith P. H..( 1983;). Isolation and characterization of Methanomicrobium paynteri sp. nov., a mesophilic methanogen isolated from marine sediments. . Appl Environ Microbiol46:484–490.
    [Google Scholar]
  18. Saito N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol4:406–425.
    [Google Scholar]
  19. Sakai S., Imachi H., Sekiguchi Y., Tseng I. C., Ohashi A., Harada H., Kamagata Y..( 2009;). Cultivation of methanogens under low-hydrogen conditions by using the coculture method. . Appl Environ Microbiol75:4892–4896. [CrossRef][PubMed]
    [Google Scholar]
  20. Sekiguchi Y., Kamagata Y., Nakamura K., Ohashi A., Harada H..( 2000;). Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. . Int J Syst Evol Microbiol50:771–779. [CrossRef][PubMed]
    [Google Scholar]
  21. Sudo Y..( 1967;). Geochemical study of brine from oil and gas fields in Japan. . J Jpn Assoc Pet Tech32:286–296. [CrossRef]
    [Google Scholar]
  22. Swofford D. L..( 2003;). paup*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sunderland, MA:: Sinauer Associates;.
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G..( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res25:4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  24. van Bruggen J. J. A., Zwart K. B., Hermans J. G. F., van Hove E. M., Stumm C. K., Vogels G. D..( 1986;). Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus quennerstedt. . Arch Microbiol144:367–374. [CrossRef]
    [Google Scholar]
  25. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J..( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol173:697–703. [CrossRef][PubMed]
    [Google Scholar]
  26. Wildgruber G., Thomm M., Konig H., Ober K., Richiuto T., Stetter K. O..( 1982;). Methanoplanus limicola, a plate-shaped methanogen representing a novel family, the Methanoplanaceae. . Arch Microbiol132:31–36. [CrossRef]
    [Google Scholar]
  27. Zellner G., Messner P., Kneifel H..( 1989;). Methanolacinia gen. nov., incorporating Methanomicrobium paynteri as Methanolacinia paynteri comb. nov. . J Gen Appl Microbiol35:185–202. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001444
Loading
/content/journal/ijsem/10.1099/ijsem.0.001444
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error