1887

Abstract

A mesophilic, hydrogenotrophic methanogen, designated strain MobH, was isolated from sediments derived from deep sedimentary, natural-gas-bearing aquifers in Japan. Strain MobH utilized H/CO or formate, but not ethanol, 1-propanol, 2-propanol, 2-butanol or cyclopentanol, for growth and methane production. In addition, acetate and tungsten were required for growth. Yeast extract stimulated the growth, but was not required. The cells were weakly motile with multiple flagella, presented as a curved-rod-shaped (0.8×2.0 µm) and occurred singly or in pairs. Strain MobH grew at 15–40 °C (optimum 35 °C) and at pH 5.9–7.9 (optimum pH 7.0–7.5). The sodium chloride range for growth was 0–5.8 % (optimum 2 %). The G+C content of the genomic DNA was 37.6 mol%. In the phylogenetic tree based on the 16S rRNA gene sequences, strain MobH clustered together with (95.4 % in sequence similarity), and formed a distinct clade from SEBR 4847 (95.6 %) and G-2000 (95.4 %). The two species of the genus utilized 2-propanol, whereas strain MobH and , the sole species of the genus , do not. Based on phenotypic and phylogenetic features, we propose a novel species for the isolate with the name, sp. nov. The type strain is MobH (=DSM 21220=NBRC 104160).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001444
2016-11-01
2021-10-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4873.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001444&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296[PubMed]
    [Google Scholar]
  2. Boone D. R., Whitman W. B. 1988; Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int J Syst Bacteriol 38:212–219 [View Article]
    [Google Scholar]
  3. Boone D. R., Whitman W. B., Koga Y. 2001; Family I. Methanomicrobiaceae Barker 1956, 15, AL emend. Balch and Wolfe in Balch, Balch and Wolfe in Balch, Fox, Magrum, Woese and Wolfe 1979, 268. In Bergey’s Manual of Systematic Bacteriology: The Archaea and the Deeply Branching and Phototrophic Bacteria, 2nd edn. vol. 1 pp 247–261 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  4. Göker M., Lu M., Fiebig A., Nolan M., Lapidus A., Tice H., Del Rio T. G., Cheng J. F., Han C. et al. 2014; Genome sequence of the mud-dwelling archaeon Methanoplanus limicola type strain (DSM 2279T), reclassification of Methanoplanus petrolearius as Methanolacinia petrolearia and emended descriptions of the genera Methanoplanus and Methanolacinia. Stand Genomic Sci 9:1076–1088 [View Article][PubMed]
    [Google Scholar]
  5. Igari S., Sakata S. 1989; Origin of natural gas of dissolved-in-water type in Japan inferred from chemical and isotopic compositions-occurrence of dissolved gas of thermogenic origin. Geochem J 23:139–142 [View Article]
    [Google Scholar]
  6. Kamagata Y. 2015; Keys to cultivating uncultured microbes: elaborate enrichment strategies and resuscitation of dormant cells. Microb Environ 30:289–290 [View Article][PubMed]
    [Google Scholar]
  7. Kamagata Y., Mikami E. 1991; Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41:191–196 [View Article]
    [Google Scholar]
  8. Katayama T., Kamagata Y. 2016; Cultivation of methanogens. In Hydrocarbon and Lipid Microbiology Protocols, Isolation and Cultivation pp 1–19 Edited by McGenity T. J., Timmis K. N., Nogales B. Berlin: Springer-Verlag;
    [Google Scholar]
  9. Katayama T., Yoshioka H., Mochimaru H., Meng X. Y., Muramoto Y., Usami J., Ikeda H., Kamagata Y., Sakata S. 2014; Methanohalophilus levihalophilus sp. nov., a slightly halophilic, methylotrophic methanogen isolated from natural gas-bearing deep aquifers, and emended description of the genus Methanohalophilus. Int J Syst Evol Microbiol 64:2089–2093 [View Article][PubMed]
    [Google Scholar]
  10. Katayama T., Yoshioka H., Muramoto Y., Usami J., Fujiwara K., Yoshida S., Kamagata Y., Sakata S. 2015; Physicochemical impacts associated with natural gas development on methanogenesis in deep sand aquifers. ISME J 9:436–446 [View Article][PubMed]
    [Google Scholar]
  11. Kunisue S., Mita I., Waki F. 2002; Relationship between subsurface geology and productivity of natural gas and iodine in the Mobara gas field, Boso Peninsula, central Japan. J Jpn Assoc Pet Tech 67:83–96 [View Article]
    [Google Scholar]
  12. Mochimaru H., Uchiyama H., Yoshioka H., Imachi H., Hoaki T., Tamaki H., Nakamura K., Sekiguchi Y., Kamagata Y. 2007; Methanogen diversity in deep subsurface gas-associated water at the Minami-Kanto gas field in Japan. Geomicrobiol J 24:93–100 [View Article]
    [Google Scholar]
  13. Mochimaru H., Tamaki H., Hanada S., Imachi H., Nakamura K., Sakata S., Kamagata Y. 2009; Methanolobus profundi sp. nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field. Int J Syst Evol Microbiol 59:714–718 [View Article][PubMed]
    [Google Scholar]
  14. Nakamura K., Terada T., Sekiguchi Y., Shinzato N., Meng X. Y., Enoki M., Kamagata Y. 2006; Application of pseudomurein endoisopeptidase to fluorescence in situ hybridization of methanogens within the family Methanobacteriaceae. Appl Environ Microbiol 72:6907–6913 [View Article][PubMed]
    [Google Scholar]
  15. Ollivier B., Cayol J.-L., Patel B. K. C., Magot M., Fardeau M.-L., Garcia J.-L. 1997; Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil-producing well. FEMS Microbiol Lett 147:51–56 [View Article][PubMed]
    [Google Scholar]
  16. Paynter M. J. B., Hungate R. E. 1968; Characterization of Methanobacterium mobilis, sp. n., isolated from the bovine rumen. J Bacteriol 95:1943–1951
    [Google Scholar]
  17. Rivard C. J., Henson J. M., Thomas M. V., Smith P. H. 1983; Isolation and characterization of Methanomicrobium paynteri sp. nov., a mesophilic methanogen isolated from marine sediments. Appl Environ Microbiol 46:484–490
    [Google Scholar]
  18. Saito N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  19. Sakai S., Imachi H., Sekiguchi Y., Tseng I. C., Ohashi A., Harada H., Kamagata Y. 2009; Cultivation of methanogens under low-hydrogen conditions by using the coculture method. Appl Environ Microbiol 75:4892–4896 [View Article][PubMed]
    [Google Scholar]
  20. Sekiguchi Y., Kamagata Y., Nakamura K., Ohashi A., Harada H. 2000; Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50:771–779 [View Article][PubMed]
    [Google Scholar]
  21. Sudo Y. 1967; Geochemical study of brine from oil and gas fields in Japan. J Jpn Assoc Pet Tech 32:286–296 [View Article]
    [Google Scholar]
  22. Swofford D. L. 2003 paup*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  24. van Bruggen J. J. A., Zwart K. B., Hermans J. G. F., van Hove E. M., Stumm C. K., Vogels G. D. 1986; Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus quennerstedt. Arch Microbiol 144:367–374 [View Article]
    [Google Scholar]
  25. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703 [View Article][PubMed]
    [Google Scholar]
  26. Wildgruber G., Thomm M., Konig H., Ober K., Richiuto T., Stetter K. O. 1982; Methanoplanus limicola, a plate-shaped methanogen representing a novel family, the Methanoplanaceae. Arch Microbiol 132:31–36 [View Article]
    [Google Scholar]
  27. Zellner G., Messner P., Kneifel H. 1989; Methanolacinia gen. nov., incorporating Methanomicrobium paynteri as Methanolacinia paynteri comb. nov. J Gen Appl Microbiol 35:185–202 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001444
Loading
/content/journal/ijsem/10.1099/ijsem.0.001444
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error