1887

Abstract

The taxonomic position of a Gram-staining-positive strain, designated strain S4702 was isolated from a marine sediment collected from the southern Black Sea coast, Turkey, determined using a polyphasic approach. The isolate was found to have chemotaxonomic, morphological and phylogenetic properties consistent with its classification as representing a member of the genus and formed a distinct phyletic line in the 16S rRNA gene tree. S4702 was found to be most closely related to the type strains of (DSM 41968; 97.8 % sequence similarity) and (YIM M 10400; 97.6 %). 16S rRNA gene sequence similarities with other members of the genus were lower than 97.5 %. DNA–DNA relatedness of S4702 and the most closely related strain DSM 41968 was 21.0 %. The G+C content of the genomic DNA was 72.5 mol%. The cell wall of the strain contained -diaminopimelic acid and the cell-wall sugars were glucose and ribose. The major cellular fatty acids were identified as anteiso-C, iso-C, anteiso-C and iso-C. The predominant menaquinone was MK-9(H). The polar lipid profile of S4702 consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. S4702 could be distinguished from its closest phylogenetic neighbours using a combination of chemotaxonomic, morphological and physiological properties. Consequently, it is proposed that S4702 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is S4702 (DSM 42103=KCTC 29206=CGMCC 4.7357).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001442
2016-11-01
2020-08-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4856.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001442&mimeType=html&fmt=ahah

References

  1. Beffa T., Blanc M., Lyon P. F., Vogt G., Marchiani M., Fischer J. L., Aragno M.. 1996; Isolation of Thermus strains from hot composts (60 to 80 °C). Appl Environ Microbiol62:1723–1727[PubMed]
    [Google Scholar]
  2. Belduz A. O., Dulger S., Demirbag Z.. 2003; Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol53:1315–1320 [CrossRef][PubMed]
    [Google Scholar]
  3. Carro L., Zúñiga P., De la Calle F., Trujillo M. E.. 2012; Streptomyces pharmamarensis sp. nov. isolated from a marine sediment. Int J Syst Evol Microbiol62:1165–1170 [CrossRef][PubMed]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  5. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W.. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol57:2259–2261 [CrossRef][PubMed]
    [Google Scholar]
  6. Clement B. G., Luther G. W., Tebo B. M.. 2009; Rapid, oxygen-dependent microbial Mn(II) oxidation kinetics at sub-micromolar oxygen concentrations in the Black Sea suboxic zone. Geochim Cosmochim Acta73:1878–1889 [CrossRef]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:143–153[CrossRef]
    [Google Scholar]
  8. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. 1985; Confidence limits on phylogeny: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  10. Gonzalez J. M., Saiz-Jimenez C.. 2005; A simple fluorimetric method for the estimation of DNA–DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles9:75–79 [CrossRef][PubMed]
    [Google Scholar]
  11. Goodfellow M., Fiedler H.-P.. 2010; A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie van Leeuwenhoek98:119–142 [CrossRef][PubMed]
    [Google Scholar]
  12. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  13. Hasegawa T., Takizawa M., Tanida S.. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol29:319–322 [CrossRef]
    [Google Scholar]
  14. Huss V. A., Festl H., Schleifer K. H.. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  15. Jones K. L.. 1949; Fresh isolates of actinomycetes in which the presence of sporogeneous aerial mycelia is a fluctuating characteristic. J Bacteriol57:141–145
    [Google Scholar]
  16. Kämpfer P., Kroppenstedt R. M.. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol42:989–1005 [CrossRef]
    [Google Scholar]
  17. Kämpfer P.. 2012; Genus I. Streptomyces Waksman and Henrici 1943. In Bergey’s Manual of Systematic Bacteriologyvol. 5 , pp.1455–1767 Edited by Whitman W., Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M., Ludwig W., Suzuki K.-I.. New York, Dordrecht, Heidelberg, London: Springer;[CrossRef]
    [Google Scholar]
  18. Kelly K. L.. 1964; Inter-Society Color Council–National Bureau of Standards Color-Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office;
    [Google Scholar]
  19. Khan S. T., Tamura T., Takagi M., Shin-Ya K.. 2010; Streptomyces tateyamensis sp. nov., Streptomyces marinus sp. nov. and Streptomyces haliclonae sp. nov., isolated from the marine sponge Haliclona sp. Int J Syst Evol Microbiol60:2775–2779 [CrossRef][PubMed]
    [Google Scholar]
  20. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  21. Kluge A. G., Farris J. S.. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool18:1–32 [CrossRef]
    [Google Scholar]
  22. Labeda D. P.. 1992; DNA–DNA hybridization in the systematics of Streptomyces. Gene115:249–253 [CrossRef][PubMed]
    [Google Scholar]
  23. Labeda D. P., Goodfellow M., Brown R., Ward A. C., Lanoot B., Vanncanneyt M., Swings J., Kim S. B., Liu Z. et al. 2012; Phylogenetic study of the species within the family Streptomycetaceae. Antonie van Leeuwenhoek101:73–104 [CrossRef][PubMed]
    [Google Scholar]
  24. Lechevalier M. P, Lechevalier H.. 1970; Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol20:435–443 [CrossRef]
    [Google Scholar]
  25. Mandel M., Marmur J.. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol12:195–206[CrossRef]
    [Google Scholar]
  26. Manfio G. P., Zakrzewska-Czerwinska J., Atalan E., Goodfellow M.. 1995; Towards minimal standards for the description of Streptomyces species. Biotechnologia7–8:242–253
    [Google Scholar]
  27. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol3:208–218 [CrossRef]
    [Google Scholar]
  28. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  29. Murray J. W., Codispoti L. A., Friederich G. E.. 1995; Oxidation–reduction environments. The suboxic zone in the Black Sea. In Aquatic Chemistry: Interfacial and Interspecies Processes. ACS Advances in Chemistry Seriesvol. 244 pp.157–176 Edited by Huang C.-P., O’Melia C. R., Morgan J. J.. Washington, DC: American Chemical Society;[CrossRef]
    [Google Scholar]
  30. Nash P., Krent M. M.. 1991; Culture media. In Manual of Clinical Microbiology, 5th edn. pp.1268–1270 Edited by Ballows A., Hauser W. J., Herrmann K. L., Isenberg H. D., Shadomy H. J.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Phongsopitanun W., Thawai C., Suwanborirux K., Kudo T., Ohkuma M., Tanasupawat S.. 2014; Streptomyces chumphonensis sp. nov., isolated from marine sediments. Int J Syst Evol Microbiol64:2605–2610 [CrossRef][PubMed]
    [Google Scholar]
  32. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  33. Sanglier J. J., Whitehead D., Saddler G. S., Ferguson E., Goodfellow M.. 1992; Pyrolysis mass spectrometry as a method for the classification, identification and selection of actinomycetes. Gene115:235–242 [CrossRef][PubMed]
    [Google Scholar]
  34. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids , MIDI Technical Note 101. Newark, DE: MIDI Inc;
    [Google Scholar]
  35. Shirling E. B., Gottlieb D.. 1966; Methods for characterizing Streptomyces species. Int J Syst Bacteriol16:313–340 [CrossRef]
    [Google Scholar]
  36. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  37. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  38. Tian X.-P., Xu Y., Zhang J., Li J., Chen Z., Kim C.-J., Li W.-J., Zhang C.-S., Zhang S.. 2012; Streptomyces oceani sp. nov., a new obligate marine actinomycete isolated from a deep-sea sample of seep authigenic carbonate nodule in South China Sea. Antonie van Leeuwenhoek102:335–343[CrossRef]
    [Google Scholar]
  39. Tindall B. J.. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol13:128–130 [CrossRef]
    [Google Scholar]
  40. Tindall B. J.. 1990b; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Letts66:199–202 [CrossRef]
    [Google Scholar]
  41. Veyisoglu A., Sazak A., Cetin D., Guven K., Sahin N.. 2013; Saccharomonospora amisosensis sp. nov., isolated from deep marine sediment. Int J Syst Evol Microbiol63:3782–3786 [CrossRef][PubMed]
    [Google Scholar]
  42. Veyisoglu A., Sahin N.. 2014; Streptomyces hoynatensis sp. nov., isolated from deep marine sediment. Int J Syst Evol Microbiol64:819–826 [CrossRef][PubMed]
    [Google Scholar]
  43. Veyisoglu A., Sahin N.. 2015; Streptomyces klenkii sp. nov. isolated from deep marine sediment. Antonie van Leeuwenhoek107:273–279[CrossRef]
    [Google Scholar]
  44. Waksman S. A., Henrici A. T.. 1943; The nomenclature and classification of the actinomycetes. J Bacteriol46:337–341[PubMed]
    [Google Scholar]
  45. Waksman S. A.. 1961; The Actinomycetes, Classification, Identification and Description of Genera and Species vol. 2 Baltimore: Williams & Wilkins;
    [Google Scholar]
  46. Waksman S. A.. 1967; The Actinomycetes. A Summary of Current Knowledge , pp.280 New York: The Ronald Press Co;
    [Google Scholar]
  47. Wayne L. G., Moore W. E. C., Kandler O., Colwell R. R., Krichevsky M. I., Murray R. G. E., Grimont P. A. D., Brenner D. J., Moore L. H. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  48. Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J.. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol129:1743–1813 [CrossRef][PubMed]
    [Google Scholar]
  49. Wright F., Bibb M. J.. 1992; Codon usage in the G+C-rich Streptomyces genome. Gene113:55–65 [CrossRef][PubMed]
    [Google Scholar]
  50. Xiao J., Wang Y., Luo Y., Xie S.-J., Ruan J.-S., Xu J.. 2009; Streptomyces avicenniae sp. nov., a novel actinomycete isolated from the rhizosphere of the mangrove plant Avicennia mariana. Int J Syst Evol Microbiol59:2624–2628 [CrossRef][PubMed]
    [Google Scholar]
  51. Xu Y., He J., Tian X. P., Li J., Yang L. L., Xie Q., Tang S. K., Chen Y. G., Zhang S., Li W. J.. 2012; Streptomyces glycovorans sp. nov., Streptomyces xishensis sp. nov. and Streptomyces abyssalis sp. nov., isolated from marine sediments. Int J Syst Evol Microbiol62:2371–2377 [CrossRef][PubMed]
    [Google Scholar]
  52. Zhao X. Q., Li W. J., Jiao W. C., Li Y., Yuan W. J., Zhang Y. Q., Klenk H. P., Suh J. W., Bai F. W.. 2009; Streptomyces xinghaiensis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol59:2870–2874 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001442
Loading
/content/journal/ijsem/10.1099/ijsem.0.001442
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error