1887

Abstract

A facultatively anaerobic, spore-forming Bacillus strain, FSL W8-0169, collected from raw milk stored in a silo at a dairy powder processing plant in the north-eastern USA was initially identified as a Bacillus cereus group species based on a partial sequence of the rpoB gene and 16S rRNA gene sequence. Analysis of core genome single nucleotide polymorphisms clustered this strain separately from known B. cereus group species. Pairwise average nucleotide identity blast values obtained for FSL W8-0169 compared to the type strains of existing B. cereus group species were <95 % and predicted DNA–DNA hybridization values were <70 %, suggesting that this strain represents a novel B. cereus group species. We characterized 10 additional strains with the same or closely related rpoB allelic type, by whole genome sequencing and phenotypic analyses. Phenotypic characterization identified a higher content of iso-C16 : 0 fatty acid and the combined inability to ferment sucrose or to hydrolyse arginine as the key characteristics differentiating FSL W8-0169 from other B. cereus group species. FSL W8-0169 is psychrotolerant, produces haemolysin BL and non-haemolytic enterotoxin, and is cytotoxic in a HeLa cell model. The name Bacillus wiedmannii sp. nov. is proposed for the novel species represented by the type strain FSL W8-0169 (=DSM 102050=LMG 29269).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001421
2016-11-01
2019-08-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4744.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001421&mimeType=html&fmt=ahah

References

  1. Angiuoli S. V., Gussman A., Klimke W., Cochrane G., Field D., Garrity G., Kodira C. D., Kyrpides N., Madupu R. et al.( 2008;). Toward an online repository of standard operating procedures (SOPs) for (meta)genomic annotation. . OMICS12:137–141. [CrossRef][PubMed]
    [Google Scholar]
  2. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S. et al.( 2012;). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. . J Comput Biol19:455–477. [CrossRef][PubMed]
    [Google Scholar]
  3. Bolger A. M., Lohse M., Usadel B..( 2014;). Trimmomatic: a flexible trimmer for Illumina sequence data. . Bioinformatics30:2114–2120. [CrossRef][PubMed]
    [Google Scholar]
  4. Ceuppens S., Boon N., Uyttendaele M..( 2013;). Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. . FEMS Microbiol Ecol84:433–450. [CrossRef][PubMed]
    [Google Scholar]
  5. Chan J. Z., Halachev M. R., Loman N. J., Constantinidou C., Pallen M. J..( 2012;). Defining bacterial species in the genomic era: insights from the genus Acinetobacter. . BMC Microbiol12:302. [CrossRef][PubMed]
    [Google Scholar]
  6. Gardner S. N., Hall B. G..( 2013;). When whole-genome alignments just won't work: kSNP v2 software for alignment-free SNP discovery and phylogenetics of hundreds of microbial genomes. . PLoS One8:e81760. [CrossRef][PubMed]
    [Google Scholar]
  7. Guinebretière M. H., Thompson F. L., Sorokin A., Normand P., Dawyndt P., Ehling-Schulz M., Svensson B., Sanchis V., Nguyen-The C. et al.( 2008;). Ecological diversification in the Bacillus cereus group. . Environ Microbiol10:851–865. [CrossRef][PubMed]
    [Google Scholar]
  8. Guinebretière M. H., Velge P., Couvert O., Carlin F., Debuyser M. L., Nguyen-The C..( 2010;). Ability of Bacillus cereus group strains to cause food poisoning varies according to phylogenetic affiliation (groups I to VII) rather than species affiliation. . J Clin Microbiol48:3388–3391. [CrossRef][PubMed]
    [Google Scholar]
  9. Guinebretière M. H., Auger S., Galleron N., Contzen M., De Sarrau B., De Buyser M. L., Lamberet G., Fagerlund A., Granum P. E. et al.( 2013;). Bacillus cytotoxicus sp. nov. is a novel thermotolerant species of the Bacillus cereus Group occasionally associated with food poisoning. . Int J Syst Evol Microbiol63:31–40. [CrossRef][PubMed]
    [Google Scholar]
  10. Gurevich A., Saveliev V., Vyahhi N., Tesler G..( 2013;). QUAST: quality assessment tool for genome assemblies. . Bioinformatics29:1072–1075. [CrossRef][PubMed]
    [Google Scholar]
  11. Huck J. R., Hammond B. H., Murphy S. C., Woodcock N. H., Boor K. J..( 2007;). Tracking spore-forming bacterial contaminants in fluid milk-processing systems. . J Dairy Sci90:4872–4883. [CrossRef][PubMed]
    [Google Scholar]
  12. Ivy R. A., Ranieri M. L., Martin N. H., den Bakker H. C., Xavier B. M., Wiedmann M., Boor K. J..( 2012;). Identification and characterization of psychrotolerant sporeformers associated with fluid milk production and processing. . Appl Environ Microbiol78:1853–1864. [CrossRef][PubMed]
    [Google Scholar]
  13. Jiménez G., Urdiain M., Cifuentes A., López-López A., Blanch A. R., Tamames J., Kämpfer P., Kolstø A. B., Ramón D. et al.( 2013;). Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparisons of the species of the group by means of ANI calculations. . Syst Appl Microbiol36:383–391. [CrossRef][PubMed]
    [Google Scholar]
  14. Jung M. Y., Paek W. K., Park I. S., Han J. R., Sin Y., Paek J., Rhee M. S., Kim H., Song H. S. et al.( 2010;). Bacillus gaemokensis sp. nov., isolated from foreshore tidal flat sediment from the Yellow Sea. . J Microbiol48:867–871. [CrossRef][PubMed]
    [Google Scholar]
  15. Jung M. Y., Kim J. S., Paek W. K., Lim J., Lee H., Kim P. I., Ma J. Y., Kim W., Chang Y. H..( 2011;). Bacillus manliponensis sp. nov., a new member of the Bacillus cereus group isolated from foreshore tidal flat sediment. . J Microbiol49:1027–1032. [CrossRef][PubMed]
    [Google Scholar]
  16. Kim M. J., Han J. K., Park J. S., Lee J. S., Lee S. H., Cho J. I., Kim K. S..( 2015;). Various enterotoxin and other virulence factor genes widespread among Bacillus cereus and Bacillus thuringiensis strains. . J Microbiol Biotechnol25:872–879. [CrossRef][PubMed]
    [Google Scholar]
  17. Lechner S., Mayr R., Francis K. P., Prüss B. M., Kaplan T., Wiessner-Gunkel E., Stewart G. S., Scherer S..( 1998;). Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. . Int J Syst Bacteriol48:1373–1382. [CrossRef][PubMed]
    [Google Scholar]
  18. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R..1000 Genome Project Data Processing Subgroup( 2009;). The sequence alignment/Map format and SAMtools. . Bioinformatics25:2078–2079. [CrossRef][PubMed]
    [Google Scholar]
  19. Liu B., Liu G. H., Hu G. P., Sengonca C., Cetin S., Lin N. Q., Tang J. Y., Tang W. Q., Lin Y. Z..( 2014;). Bacillus bingmayongensis sp. nov., isolated from the pit soil of Emperor Qin's Terra-cotta warriors in China. . Antonie Van Leeuwenhoek105:501–510. [CrossRef][PubMed]
    [Google Scholar]
  20. Liu Y., Lai Q., Göker M., Meier-Kolthoff J. P., Wang M., Sun Y., Wang L., Shao Z..( 2015;). Genomic insights into the taxonomic status of the Bacillus cereus group. . Sci Rep5:14082. [CrossRef][PubMed]
    [Google Scholar]
  21. Logan N. A., Carman J. A., Melling J., Berkeley R. C..( 1985;). Identification of Bacillus anthracis by API tests. . J Med Microbiol20:75–85. [CrossRef][PubMed]
    [Google Scholar]
  22. Logan N. A., De Vos P..( 2009;). Genus I. Bacillus Cohn 1872, 174AL. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 3 (The Firmicutes), pp. 21–128. Edited by Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W.. New York:: Springer;.
    [Google Scholar]
  23. Lücking G., Stoeckel M., Atamer Z., Hinrichs J., Ehling-Schulz M..( 2013;). Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage. . Int J Food Microbiol166:270–279. [CrossRef][PubMed]
    [Google Scholar]
  24. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M..( 2013;). Genome sequence-based species delimitation with confidence intervals and improved distance functions. . BMC Bioinformatics14:60. [CrossRef][PubMed]
    [Google Scholar]
  25. Miller R. A., Kent D. J., Watterson M. J., Boor K. J., Martin N. H., Wiedmann M..( 2015a;). Spore populations among bulk tank raw milk and dairy powders are significantly different. . J Dairy Sci98:8492–8504. [CrossRef]
    [Google Scholar]
  26. Miller R. A., Kent D. J., Boor K. J., Martin N. H., Wiedmann M..( 2015b;). Different management practices are associated with mesophilic and thermophilic spore levels in bulk tank raw milk. . J Dairy Sci98:4338–4351. [CrossRef]
    [Google Scholar]
  27. Moayeri M., Leppla S. H., Vrentas C., Pomerantsev A. P., Liu S..( 2015;). Anthrax pathogenesis. . Annu Rev Microbiol69:185–208. [CrossRef][PubMed]
    [Google Scholar]
  28. Nakamura L. K..( 1994;). DNA relatedness among Bacillus thuringiensis serovars. . Int J Syst Bacteriol44:125–129. [CrossRef][PubMed]
    [Google Scholar]
  29. Nakamura L. K..( 1998;). Bacillus pseudomycoides sp. nov. . Int J Syst Bacteriol48:1031–1035. [CrossRef][PubMed]
    [Google Scholar]
  30. R Core Team( 2014;). R: A language and environment for statistical computing. . Vienna:: R Foundation for Statistical Computing;.
  31. Richter M., Rosselló-Móra R..( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci USA106:19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  32. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S. et al.( 2012;). Fiji: an open-source platform for biological-image analysis. . Nat Method9:676–682. [CrossRef]
    [Google Scholar]
  33. Schumann P..( 2011;). Peptidoglycan structure. . Method Microbiol38:101–129.[CrossRef]
    [Google Scholar]
  34. Smith N. R., Gordon R. E., Clarck F. E..( 1952;). Aerobic Spore-Forming Bacteria Monograph No 16. Washington, DC:: US Department of Agriculture;.
    [Google Scholar]
  35. Stamatakis A..( 2014;). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. . Bioinformatics30:1312–1313. [CrossRef][PubMed]
    [Google Scholar]
  36. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol30:2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  37. U.S. Food and Drug Administration.( 2015;). Bacteriological analytical manual (BAM). . http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm2006949.htm.
  38. Watterson M. J., Kent D. J., Boor K. J., Wiedmann M., Martin N. H..( 2014;). Evaluation of dairy powder products implicates thermophilic sporeformers as the primary organisms of interest. . J Dairy Sci97:2487–2497. [CrossRef][PubMed]
    [Google Scholar]
  39. Wright E. S., Yilmaz L. S., Noguera D. R..( 2012;). DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. . Appl Environ Microbiol78:717–725. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001421
Loading
/content/journal/ijsem/10.1099/ijsem.0.001421
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error