1887

Abstract

A novel actinobacterial strain, designated DS3010, was isolated from a Black Sea marine sediment and characterized using a polyphasic approach. The strain was shown to have chemotaxonomic, morphological and phylogenetic properties consistent with classification as representing a member of the genus Micromonospora . Comparative 16S rRNA gene sequence studies showed that the strain was most closely related to the type strains of Micromonospora saelicesensis (99.5 %), Micromonospora chokoriensis (99.4 %) and Micromonospora violae (99.3 %). Similarly, a corresponding analysis based on partial gyrB gene sequences showed that it formed a distinct phyletic branch in a subclade that included the type strains of Micromonosporazamorensis, ‘ Micromonospora zeae ’, ‘ Micromonospora jinlongensis ’, M. saelicesensis and Micromonospora lupini . DS3010 was distinguished from its closest phylogenetic neighbours by low levels of DNA–DNA relatedness and by a combination of chemotaxonomic and phenotypic properties. On the basis of these data, it is proposed that the isolate should be assigned to the genus Micromonospora as Micromonospora profundi sp. nov. with isolate DS3010 (=DSM 45981=KCTC 29243) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001419
2016-11-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4735.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001419&mimeType=html&fmt=ahah

References

  1. Ara I., Kudo T..( 2007;). Two new species of the genus Micromonospora: Micromonospora chokoriensis sp. nov. and Micromonospora coxensis sp. nov., isolated from sandy soil. . J Gen Appl Microbiol53:29–37. [CrossRef][PubMed]
    [Google Scholar]
  2. Bérdy J..( 2005;). Bioactive microbial metabolites. . J Antibiot58:1–26. [CrossRef][PubMed]
    [Google Scholar]
  3. Carro L., Pukall R., Spröer C., Kroppenstedt R. M., Trujillo M. E..( 2012a;). Micromonospora cremea sp. nov. and Micromonospora zamorensis sp. nov., isolated from the rhizosphere of Pisum sativum. . Int J Syst Evol Microbiol62:2971–2977. [CrossRef][PubMed]
    [Google Scholar]
  4. Carro L., Spröer C., Alonso P., Trujillo M. E..( 2012b;). Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. . Syst Appl Microbiol35:73–80. [CrossRef][PubMed]
    [Google Scholar]
  5. Carro L., Riesco R., Spröer C., Trujillo M. E..( 2016;). Micromonospora luteifusca sp. nov. isolated from cultivated Pisum sativum. . Syst App Microb39:237–242. [CrossRef]
    [Google Scholar]
  6. Cashion P., Holder-Franklin M. A., McCully J., Franklin M..( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem81:461–466. [CrossRef][PubMed]
    [Google Scholar]
  7. Chun J., Goodfellow M..( 1995;). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. . Int J Syst Bacteriol45:240–245. [CrossRef][PubMed]
    [Google Scholar]
  8. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E..( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol100:221–230. [CrossRef][PubMed]
    [Google Scholar]
  9. De Ley J., Cattoir H., Reynaerts A..( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem12:143–153.[CrossRef]
    [Google Scholar]
  10. Felsenstein J..( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol17:368–376. [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution39:783–791. [CrossRef]
    [Google Scholar]
  12. Gao R., Liu C., Zhao J., Jia F., Yu C., Yang L., Wang X., Xiang W..( 2014;). Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. . Antonie Van Leeuwenhoek105:307–315. [CrossRef][PubMed]
    [Google Scholar]
  13. Garcia L. C., Martínez-Molina E., Trujillo M. E..( 2010;). Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. . Int J Syst Evol Microbiol60:331–337. [CrossRef][PubMed]
    [Google Scholar]
  14. Genilloud O..( 2012a;). Order XI. Micromonosporales or. nov. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 5 The Actinobacteria, Part B, pp. 1035. Edited by Goodfellow M., Kämpfer P., Busse H. J., Trujillo M. E., Suzuki K. I., Ludwig W., Whitman W. B.. New York:: Springer;.
    [Google Scholar]
  15. Genilloud O..( 2012b;). Family I. Micromonosporaceae Krasil’nikov 1938, 272AL emend. Zhi, Li and Stackebrandt 2009, 599. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 5 The Actinobacteria, Part B, pp. 1035–1038. Edited by Goodfellow M., Kämpfer P., Busse H. J., Trujillo M. E., Suzuki K. I., Ludwig W., Whitman W. B.. New York:: Springer;.
    [Google Scholar]
  16. Genilloud O..( 2012c;). Genus I. Micromonospora Ørskov 1923, 156AL. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 5 The Actinobacteria, Part B , pp. 1039–1057. Edited by Goodfellow M., Kämpfer P., Busse H. J., Trujillo M. E., Suzuki K. I., Ludwig W., Whitman W. B.. New York:: Springer;.
    [Google Scholar]
  17. Huss V. A., Festl H., Schleifer K. H..( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol4:184–192. [CrossRef][PubMed]
    [Google Scholar]
  18. Jia F., Liu C., Zhou S., Li J., Shen Y., Guan X., Guo S., Gao M., Wang X., Xiang W..( 2015;). Micromonospora vulcania sp. nov., isolated from volcanic sediment. . Antonie Van Leeuwenhoek108:1383–1390. [CrossRef][PubMed]
    [Google Scholar]
  19. Kämpfer P., Kroppenstedt R. M..( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol42:989–1005. [CrossRef]
    [Google Scholar]
  20. Kasai H., Tamura T., Harayama S..( 2000;). Intrageneric relationships among Micromonospora species deduced from gyrB-based phylogeny and DNA relatedness. . Int J Syst Evol Microbiol50:127–134. [CrossRef][PubMed]
    [Google Scholar]
  21. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol62:716–721. [CrossRef][PubMed]
    [Google Scholar]
  22. Kimura M..( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol16:111–120. [CrossRef][PubMed]
    [Google Scholar]
  23. Kirby B. M., Meyers P. R..( 2010;). Micromonospora tulbaghiae sp. nov., isolated from the leaves of wild garlic, Tulbaghia violacea. . Int J Syst Evol Microbiol60:1328–1333. [CrossRef][PubMed]
    [Google Scholar]
  24. Kluge A. G., Farris J. S..( 1969;). Quantitative phyletics and the evolution of anurans. . Syst Zool18:1–32.[CrossRef]
    [Google Scholar]
  25. Kroppenstedt R. M..( 1982;). Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger. . J Liquid Chromatogr5:2359–2387.[CrossRef]
    [Google Scholar]
  26. Kroppenstedt R. M., Goodfellow M..( 2006;). The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillispora and Thermomonospora. . In Prokaryotes. Archaea and Bacteria: Firmicutes, Actinomycetes, , 3rd edn.,vol. 3 , pp. 682–724. Edited by Dworkin M., Falkow S., Schleifer K. H., Stackebrandt E.. New York:: Springer;.
    [Google Scholar]
  27. Lechevalier M. P, Lechevalier H..( 1970;). Chemical composition as a criterion in the classification of aerobic actinomycetes. . Int J Syst Bacteriol20:435–443. [CrossRef]
    [Google Scholar]
  28. Lechevalier M. P., De Bievre C., Lechevalier H..( 1977;). Chemotaxonomy of aerobic actinomycetes: phospholipid composition. . Biochem Syst Ecol5:249–260. [CrossRef]
    [Google Scholar]
  29. Li C., Liu C., Zhao J., Zhang Y., Gao R., Zhang X., Yao M., Wang X., Xiang W..( 2014;). Micromonospora maoerensis sp. nov., isolated from a Chinese pine forest soil. . Antonie Van Leeuwenhoek105:451–459. [CrossRef][PubMed]
    [Google Scholar]
  30. Lin Y. B., Fan M. C., Guo Y. Q., Di X. H., Dong D. H., Zhang X., Wei G. H..( 2015;). Micromonospora nickelidurans sp. nov., isolated from soil from a nickel-mining site. . Int J Syst Evol Microbiol65:4615–4620. [CrossRef][PubMed]
    [Google Scholar]
  31. Mandel M., Marmur J..( 1968;). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. . Meth Enzymol12B:195–206.[CrossRef]
    [Google Scholar]
  32. Matsumoto A., Kawaguchi Y., Nakashima T., Iwatsuki M., Ōmura S., Takahashi Y..( 2014;). Rhizocola hellebori gen. nov., sp. nov., an actinomycete of the family Micromonosporaceae containing 3,4-dihydroxydiaminopimelic acid in the cell-wall peptidoglycan. . Int J Syst Evol Microbiol64:2706–2711. [CrossRef][PubMed]
    [Google Scholar]
  33. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H..( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Method2:233–241. [CrossRef]
    [Google Scholar]
  34. Ørskov J..( 1923;). Investigations Into the Morphology of the Ray Fungi. Copenhagen:: Levin and Munksgaard;.
    [Google Scholar]
  35. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol4:406–425.[PubMed]
    [Google Scholar]
  36. Sasser M..( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. Technical Note, 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  37. Shen Y., Zhang Y., Liu C., Wang X., Zhao J., Jia F., Yang L., Yang D., Xiang W..( 2014;). Micromonospora zeae sp. nov., a novel endophytic actinomycete isolated from corn root (Zea mays L.). . J Antibiot67:739–743. [CrossRef][PubMed]
    [Google Scholar]
  38. Shirling E. B., Gottlieb D..( 1966;). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol16:313–340. [CrossRef]
    [Google Scholar]
  39. Staneck J. L., Roberts G. D..( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol28:226–231.[PubMed]
    [Google Scholar]
  40. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol30:2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  41. Thawai C..( 2015;). Micromonospora costi sp. nov., isolated from a leaf of Costus speciosus. . Int J Syst Evol Microbiol65:1456–1461. [CrossRef][PubMed]
    [Google Scholar]
  42. Thawai C., Kittiwongwattana C., Thanaboripat D., Laosinwattana C., Koohakan P., Parinthawong N..( 2016;). Micromonospora soli sp. nov., isolated from rice rhizosphere soil. . Antonie Van Leeuwenhoek109:449–456. [CrossRef][PubMed]
    [Google Scholar]
  43. Trujillo M. E., Kroppenstedt R. M., Fernández-Molinero C., Schumann P., Martínez-Molina E..( 2007;). Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. . Int J Syst Evol Microbiol57:2799–2804. [CrossRef][PubMed]
    [Google Scholar]
  44. Uchida K., Kudo T., Suzuki K. I., Nakase T..( 1999;). A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. . J Gen Appl Microbiol45:49–56. [CrossRef][PubMed]
    [Google Scholar]
  45. Veyisoglu A., Carro L., Guven K., Cetin D., Spröer C., Schumann P., Klenk H. P., Goodfellow M., Sahin N..( 2016;). Micromonospora yasonensis sp. nov., isolated from a Black Sea sediment. . Antonie Van Leeuwenhoek109:1019–1028. [CrossRef][PubMed]
    [Google Scholar]
  46. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. et al.( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Evol Microbiol37:463–464.[CrossRef]
    [Google Scholar]
  47. Zhang Y., Liu H., Zhang X., Wang S., Liu C., Yu C., Wang X., Xiang W..( 2014;). Micromonospora violae sp. nov., isolated from a root of Viola philippica Car. . Antonie Van Leeuwenhoek106:219–225. [CrossRef][PubMed]
    [Google Scholar]
  48. Zhang L., Li L., Deng Z., Hong K..( 2015;). Micromonospora zhanjiangensis sp. nov., isolated from mangrove forest soil. . Int J Syst Evol Microbiol65:4880–4885. [CrossRef][PubMed]
    [Google Scholar]
  49. Zhao J., Guo L., Liu C., Zhang Y., Guan X., Li J., Xu S., Xiang W., Wang X..( 2016;). Micromonospora lycii sp. nov., a novel endophytic actinomycete isolated from wolfberry root (Lycium chinense Mill). . J Antibiot69:153–158. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001419
Loading
/content/journal/ijsem/10.1099/ijsem.0.001419
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error