1887

Abstract

One beige-pigmented, Gram-staining-negative, rod-shaped bacterium, strain E3/2, was isolated from a zebrafish, Daniorerio. Phylogenetic analysis based on nearly full-length 16S rRNA gene sequences showed that the isolate shared 97.7 % 16S rRNA gene sequence similarity to the species Pseudoduganella violaceinigra and between 97.4 to 97.0 % to some species of the genera Duganella and Massilia , including Duganella radicis , Duganella phyllosphaerae , Massilia dura , Massilia lutea , Duganella sacchari , Duganella zoogloeoides , Massilia albidiflava and Massilia umbonata . Sequence similarities to all other species were below 97 %. The main cellular fatty acids of the strain were summed feature 3 fatty acids (C16 : 1 ω7c/iso-C15 : 0 2-OH), C10 : 0 3-OH, C16 : 0 and C12 : 0. The polyamine pattern of strain E3/2 contained predominantly putrescine and 2-hydroxyputrescine. The major quinone was ubiquinone Q-8. Major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Based on phylogenetic, chemotaxonomic, genomic and phenotypic analyses we propose a novel species of the genus Pseudoduganella named Pseudoduganella danionis sp. nov., with strain E3/2 (=LMG 29678=CCM 8698) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001408
2016-11-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4671.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001408&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J..( 1996;). Classification of bacteria isolated from a medieval wall painting. . J Biotechnol47:39–52. [CrossRef]
    [Google Scholar]
  2. Brosius J., Dull T., Sleeter D., Noller H..( 1978;). Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. . J Mol Biol148:107–127. [CrossRef]
    [Google Scholar]
  3. Busse H.-J., Auling G..( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol11:1–8. [CrossRef]
    [Google Scholar]
  4. Busse H.-J., Bunka S., Hensel A., Lubitz W..( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol47:698–708. [CrossRef]
    [Google Scholar]
  5. Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution39:783–791. [CrossRef]
    [Google Scholar]
  6. Felsenstein J..( 2005;). PHYLIP (phylogeny inference package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA:.
  7. Garrity G. M., Bell J. A., Lilburn T..( 2005;). Family II. Oxalobacteraceae fam. nov. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 2C p. 623. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York:: Springer;.
    [Google Scholar]
  8. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N..( (editors)) ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  9. Haffter P., Granato M., Brand M., Mullins M. C., Hammerschmidt M., Kane D. A., Odenthal J., van Eeden F. J. M., Jiang Y.-J. et al.( 1996;). The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. . Development123:1–36.[PubMed]
    [Google Scholar]
  10. Jukes T. H., Cantor C. R..( 1969;). Evolution of the protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. N.. New York:: Academic Press;.[CrossRef]
    [Google Scholar]
  11. Kämpfer P., Steiof M., Dott W..( 1991;). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. . Microb Ecol21:227–251. [CrossRef][PubMed]
    [Google Scholar]
  12. Kämpfer P., Kroppenstedt R. M..( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol42:989–1005. [CrossRef]
    [Google Scholar]
  13. Kämpfer P., Wellner S., Lohse K., Martin K., Lodders N..( 2012;). Duganella phyllosphaerae sp. nov., isolated from the leaf surface of Trifolium repens and proposal to reclassify Duganella violaceinigra into a novel genus as Pseudoduganella violceinigra gen. nov., comb. nov. . Syst Appl Microbiol35:19–23. [CrossRef][PubMed]
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol62:716–721. [CrossRef][PubMed]
    [Google Scholar]
  15. Lane D. J..( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M. Chichester:: Wiley;.
    [Google Scholar]
  16. Li W. J., Zhang Y. Q., Park D. J., Li C. T., Xu L. H., Kim C. J., Jiang C. L..( 2004;). Duganella violaceinigra sp. nov., a novel mesophilic bacterium isolated from forest soil. . Int J Syst Evol Microbiol54:1811–1814. [CrossRef][PubMed]
    [Google Scholar]
  17. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al.( 2004;). ARB: a software environment for sequence data. . Nucleic Acids Res32:1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  18. Madhaiyan M., Poonguzhali S., Saravanan V. S., Hari K., Lee K.-C., Lee J.-S..( 2013;). Duganella sacchari sp. nov. and Duganella radicis sp. nov., two novel species isolated from rhizosphere of field-grown sugar cane. . Int J Syst Evol Microbiol63:1126–1131. [CrossRef][PubMed]
    [Google Scholar]
  19. Pruesse E., Peplies J., Glöckner F. O..( 2012;). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics28:1823–1829. [CrossRef][PubMed]
    [Google Scholar]
  20. Stamatakis A..( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics22:2688–2690. [CrossRef][PubMed]
    [Google Scholar]
  21. Stolz A., Busse H.-J., Kämpfer P..( 2007;). Pseudomonas knackmussii sp. nov. . Int J Syst Evol Microbiol57:572–576. [CrossRef][PubMed]
    [Google Scholar]
  22. Tindall B. J..( 1990a;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett66:199–202. [CrossRef]
    [Google Scholar]
  23. Tindall B. J..( 1990b;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol13:128–130. [CrossRef]
    [Google Scholar]
  24. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R..( 2008;). The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol31:241–250. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001408
Loading
/content/journal/ijsem/10.1099/ijsem.0.001408
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error