sp. nov., isolated from a lead-cadmium tailing Free

Abstract

A Gram-stain-positive, strictly aerobic strain, H6, was isolated from a soil sample of lead-cadmium tailing in Qixia district, Nanjing (China). Cells of the strain are rod-shaped and colonies on LB agar are red. Strain H6 has subpolar and polar flagella and the optimal condition for growth is 30 °C, with 1 % (w/v) NaCl and at pH 7.0. Based on the 16S rRNA gene sequences, phylogenetic analysis showed that strain H6 was closely related to the genus and the closest relatives were WLJ055 (99.0 % 16S rRNA gene sequence similarity), HR1 (97.0 %) and GR21 (96.4 %). The DNA–DNA relatedness value between strain H6 and WLJ055 was 55.0 %. The major polar lipids of strain H6 were diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid and three unknown glycolipids. The DNA G+C content was 58.4 mol% and MK-7 was the major isoprenoid quinone. The major fatty acids were anteiso-C and C. -Diaminopimelic acid was detected in the peptidoglycan. Based on the phylogenetic, biochemical and chemotaxonomic data, strain H6 represents a novel species of the genus , for which the name sp. nov., is proposed. The type strain is H6 (=CCTCC AB 2016001=JCM 31172).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001404
2016-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4645.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001404&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. (editors) 1995 Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, 3rd edn. New York: Wiley;
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  3. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  4. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  5. Goris J., Suzuki K.-I., De Vos P. D., Nakase T., Kersters K. 1998; Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153 [View Article]
    [Google Scholar]
  6. Hasegawa T., Takizaea M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322 [View Article]
    [Google Scholar]
  7. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  8. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  9. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [CrossRef]
    [Google Scholar]
  10. Kroppenstedt R. M. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chrom 5:2359–2367 [View Article]
    [Google Scholar]
  11. Lane D. J. 1991; 16S /23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics , pp. 115–175 Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  12. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kampfer P., Rabinovitch L. et al. 2009; Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Sys Evol Microbiol 59:2114–2121 [View Article]
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  14. Murray R. G. E., Doetsch R. N., Robinow F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology , pp. 21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  15. Rivas R., García-Fraile P., Zurdo-Piñeiro J. L., Mateos P. F., Martínez-Molina E., Bedmar E. J., Sánchez-Raya J., Velázquez E. 2008; Saccharibacillus sacchari gen. nov., sp. nov., isolated from sugar cane. Int J Syst Evol Microbiol 58:1850–1854 [View Article][PubMed]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  17. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16
    [Google Scholar]
  18. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology , pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 44:846–849 [View Article]
    [Google Scholar]
  20. Sun J. Q., Wang X. Y., Wang L. J., Xu L., Liu M., Wu X. L. 2016; Saccharibacillus deserti sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 66:623–627 [View Article][PubMed]
    [Google Scholar]
  21. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  23. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  24. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I, Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  25. Yang S. Y., Liu H., Liu R., Zhang K. Y., Lai R. 2009; Saccharibacillus kuerlensis sp. nov., isolated from a desert soil. Int J Syst Evol Microbiol 59:953–957 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001404
Loading
/content/journal/ijsem/10.1099/ijsem.0.001404
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed