1887

Abstract

A Gram-stain-positive, strictly aerobic strain, H6, was isolated from a soil sample of lead-cadmium tailing in Qixia district, Nanjing (China). Cells of the strain are rod-shaped and colonies on LB agar are red. Strain H6 has subpolar and polar flagella and the optimal condition for growth is 30 °C, with 1 % (w/v) NaCl and at pH 7.0. Based on the 16S rRNA gene sequences, phylogenetic analysis showed that strain H6 was closely related to the genus Saccharibacillus , and the closest relatives were Saccharibacillus deserti WLJ055 (99.0 % 16S rRNA gene sequence similarity), Saccharibacillus kuerlensis HR1 (97.0 %) and Saccharibacillus sacchari GR21 (96.4 %). The DNA–DNA relatedness value between strain H6 and S. deserti WLJ055 was 55.0 %. The major polar lipids of strain H6 were diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid and three unknown glycolipids. The DNA G+C content was 58.4 mol% and MK-7 was the major isoprenoid quinone. The major fatty acids were anteiso-C15 : 0 and C16 : 0. meso-Diaminopimelic acid was detected in the peptidoglycan. Based on the phylogenetic, biochemical and chemotaxonomic data, strain H6 represents a novel species of the genus Saccharibacillus , for which the name Saccharibacillus qingshengii sp. nov., is proposed. The type strain is H6 (=CCTCC AB 2016001=JCM 31172).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001404
2016-11-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4645.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001404&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. (editors) ( 1995;). Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, , 3rd edn.. New York:: Wiley;.
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E..( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol39:224–229. [CrossRef]
    [Google Scholar]
  3. Felsenstein J..( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol17:368–376. [CrossRef][PubMed]
    [Google Scholar]
  4. Fitch W. M..( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool20:406–416.[CrossRef]
    [Google Scholar]
  5. Goris J., Suzuki K.-I., De Vos P. D., Nakase T., Kersters K..( 1998;). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. . Can J Microbiol44:1148–1153. [CrossRef]
    [Google Scholar]
  6. Hasegawa T., Takizaea M., Tanida S..( 1983;). A rapid analysis for chemical grouping of aerobic actinomycetes. . J Gen Appl Microbiol29:319–322. [CrossRef]
    [Google Scholar]
  7. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol62:716–721. [CrossRef][PubMed]
    [Google Scholar]
  8. Kimura M..( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol16:111–120. [CrossRef][PubMed]
    [Google Scholar]
  9. Komagata K., Suzuki K..( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol19:161–207.[CrossRef]
    [Google Scholar]
  10. Kroppenstedt R. M..( 1982;). Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. . J Liq Chrom5:2359–2367. [CrossRef]
    [Google Scholar]
  11. Lane D. J..( 1991;). 16S /23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics , pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. New York:: Wiley;.
    [Google Scholar]
  12. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kampfer P., Rabinovitch L. et al.( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Sys Evol Microbiol59:2114–2121. [CrossRef]
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B..( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol39:159–167. [CrossRef]
    [Google Scholar]
  14. Murray R. G. E., Doetsch R. N., Robinow F..( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology , pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  15. Rivas R., García-Fraile P., Zurdo-Piñeiro J. L., Mateos P. F., Martínez-Molina E., Bedmar E. J., Sánchez-Raya J., Velázquez E..( 2008;). Saccharibacillus sacchari gen. nov., sp. nov., isolated from sugar cane. . Int J Syst Evol Microbiol58:1850–1854. [CrossRef][PubMed]
    [Google Scholar]
  16. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol4:406–425.[PubMed]
    [Google Scholar]
  17. Sasser M..( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC Newsl20:16.
    [Google Scholar]
  18. Smibert R. M., Krieg N. R..( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology , pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  19. Stackebrandt E., Goebel B. M..( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Evol Microbiol44:846–849. [CrossRef]
    [Google Scholar]
  20. Sun J. Q., Wang X. Y., Wang L. J., Xu L., Liu M., Wu X. L..( 2016;). Saccharibacillus deserti sp. nov., isolated from desert soil. . Int J Syst Evol Microbiol66:623–627. [CrossRef][PubMed]
    [Google Scholar]
  21. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol30:2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  22. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G..( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res25:4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  23. Tindall B. J..( 1990;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett66:199–202. [CrossRef]
    [Google Scholar]
  24. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I, Moore L. H., Moore W. E. C., Murray R. G. E. et al.( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol37:463–464.[CrossRef]
    [Google Scholar]
  25. Yang S. Y., Liu H., Liu R., Zhang K. Y., Lai R..( 2009;). Saccharibacillus kuerlensis sp. nov., isolated from a desert soil. . Int J Syst Evol Microbiol59:953–957. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001404
Loading
/content/journal/ijsem/10.1099/ijsem.0.001404
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error