1887

Abstract

A Gram-stain-negative, non-motile, strictly anaerobic, oval-shaped, non-spore-forming bacterium (strain Pyt) was isolated from reticulated python faeces. Strain Pyt was capable of using mucin as sole carbon, energy and nitrogen source. Cells could grow singly, in pairs, and were also found to aggregate. Scanning electron microscopy revealed the presence of filamentous structures connecting individual bacterial cells. Strain Pyt could grow on a limited number of single sugars, including -acetylglucosamine, -acetylgalactosamine, glucose, lactose and galactose, but only when a plentiful protein source was provided. Phylogenetic analysis based on 16S rRNA gene sequencing showed strain Pyt to belong to the class I, family , genus , with Muc as the closest relative (94.4 % sequence similarity). DNA–DNA hybridization revealed low relatedness of 28.3 % with Muc. The G+C content of DNA from strain Pyt was 58.2 mol%. The average nucleotide identity (ANI) of the genome of strain Pyt compared to the genome of strain Muc was 79.7 %. Chemotaxonomic data supported the affiliation of strain Pyt to the genus . Based on phenotypic, phylogenetic and genetic characteristics, strain Pyt represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Pyt (=DSM 100705=CIP 110913).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001399
2016-11-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4614.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001399&mimeType=html&fmt=ahah

References

  1. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M. et al. 2008; The RAST Server: rapid annotations using subsystems technology. BMC Genomics9:75 [CrossRef][PubMed]
    [Google Scholar]
  2. Belzer C., de Vos W. M.. 2012; Microbes inside from diversity to function: the case of Akkermansia. ISME J6:1449–1458 [CrossRef][PubMed]
    [Google Scholar]
  3. Boisvert S., Raymond F., Godzaridis E., Laviolette F., Corbeil J.. 2012; Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol13:R122 [CrossRef][PubMed]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  5. Collado M. C., Derrien M., Isolauri E., de Vos W. M., Salminen S.. 2007; Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol73:7767–7770 [CrossRef][PubMed]
    [Google Scholar]
  6. Costello E. K., Gordon J., Secor S. M., Knight R.. 2010; Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J4:1375–1385 [CrossRef][PubMed]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133[PubMed][CrossRef]
    [Google Scholar]
  8. Derrien M., Vaughan E. E., Plugge C. M., de Vos W. M.. 2004; Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol54:1469–1476 [CrossRef][PubMed]
    [Google Scholar]
  9. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. 2007; DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  10. Graham Reynolds R., Niemiller M. L., Revell L. J.. 2014; Toward a Tree-of-Life for the boas and pythons: multilocus species-level phylogeny with unprecedented taxon sampling. Mol Phylogenet Evol71:201–213 [CrossRef][PubMed]
    [Google Scholar]
  11. Hedlund B. P.. 2010; Phylum XXIII. Verrucomicrobia phyl. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn. New York: Springer-Verlag;
    [Google Scholar]
  12. Huss V. A., Festl H., Schleifer K. H.. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  13. Kämpfer P., Kroppenstedt R. M.. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol42:989–1005 [CrossRef]
    [Google Scholar]
  14. Linden S. K., Sutton P., Karlsson N. G., Korolik V., McGuckin M. A.. 2008; Mucins in the mucosal barrier to infection. Mucosal Immunol1:183–197[CrossRef]
    [Google Scholar]
  15. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. 2004; arb: a software environment for sequence data. Nucleic Acids Res32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  16. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+ C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  17. Plugge C. M., Zoetendal E. G., Stams A. J.. 2000; Caloramator coolhaasii sp. nov., a glutamate-degrading, moderately thermophilic anaerobe. Int J Syst Evol Microbiol50:1155–1162 [CrossRef][PubMed]
    [Google Scholar]
  18. Pruesse E., Peplies J., Glöckner F. O.. 2012; SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  19. Secor S. M., Boback S. M., Lignot J.-H.. 2006; Spatial and temporal variation in the pH of the gastrointestinal tract of the Burmese python. Integr Comp Biol46:e128
    [Google Scholar]
  20. Sun Z., Harris H. M. B., McCann A., Guo C., Argimón S., Zhang W., Yang X., Jeffery I. B., Cooney J. C. et al. 2015; Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat Commun6:8322 [CrossRef]
    [Google Scholar]
  21. Suzuki M. T., Taylor L. T., DeLong E. F.. 2000; Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays. Appl Environ Microbiol66:4605–4614 [CrossRef][PubMed]
    [Google Scholar]
  22. Tamaoka J., Komagata K.. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiology Letters25:125–128 [CrossRef]
    [Google Scholar]
  23. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  24. van Passel M. W., Kant R., Zoetendal E. G., Plugge C. M., Derrien M., Malfatti S. A., Chain P. S., Woyke T., Palva A. et al. 2011; The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS One6:e16876 [CrossRef][PubMed]
    [Google Scholar]
  25. Wang T., Zaar M., Arvedsen S., Vedel-Smith C., Overgaard J.. 2002; Effects of temperature on the metabolic response to feeding in Python molurus. Comp Biochem Physiol A Mol Integr Physiol133:519–527 [CrossRef][PubMed]
    [Google Scholar]
  26. Yarza P., Yilmaz P., Pruesse E., Glöckner F. O., Ludwig W., Schleifer K. H., Whitman W. B., Euzéby J., Amann R., Rosselló-Móra R.. 2014; Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol12:635–645 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001399
Loading
/content/journal/ijsem/10.1099/ijsem.0.001399
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error