1887

Abstract

A Gram-stain-positive, non-endospore-forming actinobacterium (ARP1) was isolated from the phyllosphere of . On the basis of 16S rRNA gene sequence phylogeny strain ARP1 was placed into the genus and the closest related species were (98.5 % 16S rRNA gene sequence similarity), (98.5 %), (98.3 %) and (98.2 %). Genome-based comparison indicated a clear distinction to the type strains of those species with pairwise average nucleotide identities (ANI) between 76.4–78.4 %. The quinone system of strain ARP1 consisted predominantly of menaquinones MK-9(H), MK-7(H) and MK-8(H), and the polar lipid profile contained the major compound diphosphatidylglycerol, and moderate amounts of phosphatidylethanolamine, phosphatidylglycerol and numerous unidentified lipids. Mycolic acids were present. These chemotaxonomic traits and the major fatty acids, which were Cω7, C C Cω9 and tuberculostearic acid supported the affiliation of strain ARP1 to the genus . Genotypic, physiological and biochemical testing revealed clear differences of strain ARP1 to the most closely related species of the genus . Therefore strain ARP1 represents a novel species of this genus, for which the name sp. nov. is proposed. The type strain is ARP1 (=DSM 46872=LMG 28679).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001398
2016-11-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4609.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001398&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J.. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol47:39–52 [CrossRef]
    [Google Scholar]
  2. Brosius J., Dull T. J., Sleeter D. D., Noller H. F.. 1978; Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol148:107–127 [CrossRef]
    [Google Scholar]
  3. Collins M. D., Goodfellow M., Minnikin D. E.. 1982; A survey of the structures of mycolic acids in Corynebacterium and related taxa. J Gen Microbiol128:129–149 [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. 2005; phylip (phylogeny inference package), version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  6. Frischmann A., Knoll A., Hilbert F., Zasada A. A., Kampfer P., Busse H.-J.. 2012; Corynebacterium epidermidicanis sp. nov., isolated from skin of a dog. Int J Syst Evol Microbiol62:2194–2200 [CrossRef][PubMed]
    [Google Scholar]
  7. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) 1994; Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. 2007; DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  9. Hasegawa M., Kishino H., Yano T.. 1985; Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol22:160–174 [CrossRef][PubMed]
    [Google Scholar]
  10. Horn H., Keller A., Hildebrandt U., Kämpfer P., Riederer M., Hentschel U.. 2016; Draft genome of the Arabidopsis thaliana phyllosphere bacterium, Williamsia sp. ARP1. Stand Genomic Sci11:8 [CrossRef][PubMed]
    [Google Scholar]
  11. Jones A. L., Payne G. D., Goodfellow M.. 2010; Williamsia faeni sp. nov., a novel actinomycete isolated from a hay meadow. Int J Syst Evol Microbiol60:2548–2551 [CrossRef][PubMed]
    [Google Scholar]
  12. Jukes T. H., Cantor C. R.. 1969; Evolution of the protein molecules. In Mammalian Protein Metabolism21–132 Edited by Munro H. N.. New York: Academic Press;[CrossRef]
    [Google Scholar]
  13. Kämpfer P., Kroppenstedt R. M.. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol42:989–1005 [CrossRef]
    [Google Scholar]
  14. Kämpfer P., Kroppenstedt R. M.. 2004; Pseudonocardia benzenivorans sp. nov. Int J Syst Evol Microbiol54:749–751 [CrossRef][PubMed]
    [Google Scholar]
  15. Kämpfer P., Steiof M., Dott W.. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol21:227–251 [CrossRef][PubMed]
    [Google Scholar]
  16. Kämpfer P., Andersson M. A., Rainey F. A., Kroppenstedt R. M., Salkinoja-Salonen M.. 1999; Williamsia muralis gen. nov., sp. nov., isolated from the indoor environment of a children's day care centre. Int J Syst Bacteriol49:681–687 [CrossRef][PubMed]
    [Google Scholar]
  17. Kämpfer P., Wellner S., Lohse N., Lodders N., Martin K.. 2011; Williamsia phyllosphaerae sp. nov., isolated from the surface of Trifolium repens leaves. Int J Syst Evol Microbiol61:2702–2705 [CrossRef][PubMed]
    [Google Scholar]
  18. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  19. Kyrpides N. C., Woyke T., Eisen J. A., Garrity G., Lilburn T. G., Beck B. J., Whitman W. B., Hugenholtz P., Klenk H. P.. 2014; Genomic encyclopedia of type strains, phase I: the one thousand microbial genomes (KMG-I) project. Stand Genomic Sci9:1278–1284 [CrossRef][PubMed]
    [Google Scholar]
  20. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Buchner A., Lai T., Steppi S., Yadhu K. et al. 2004; ARB: a software environment for sequence data. Nucleic Acids Res32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  21. Pathom-aree W., Nogi Y., Sutcliffe I. C., Ward A. C., Horikoshi K., Bull A. T., Goodfellow M.. 2006; Williamsia marianensis sp. nov., a novel actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol56:1123–1126 [CrossRef][PubMed]
    [Google Scholar]
  22. Pruesse E., Peplies J., Glockner F. O.. 2012; SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  23. Richter M., Rossello-Mora R.. 2009; Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A106:19126–19131 [CrossRef]
    [Google Scholar]
  24. Sazak A., Sahin N.. 2012; Williamsia limnetica sp. nov., isolated from a limnetic lake sediment. Int J Syst Evol Microbiol62:1414–1418 [CrossRef][PubMed]
    [Google Scholar]
  25. Stach J. E. M., Maldonado L. A., Ward A. C., Bull A. T., Goodfellow M.. 2004; Williamsia maris sp. nov., a novel actinomycete isolated from the Sea of Japan. Int J Syst Evol Microbiol54:191–194 [CrossRef][PubMed]
    [Google Scholar]
  26. Stamatakis A.. 2006; RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics22:2688–2690 [CrossRef]
    [Google Scholar]
  27. Tindall B. J.. 1990a; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  28. Tindall B. J.. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol13:128–130 [CrossRef]
    [Google Scholar]
  29. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. 2008; The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  30. Yassin A. F., Hupfer H.. 2006; Williamsia deligens sp. nov., a novel species of the genus Williamsia isolated from human blood. Int J Syst Evol Microbiol56:193–197[CrossRef]
    [Google Scholar]
  31. Yassin A. F., Young C. C., Lai W. A., Hupfer H., Arun A. B., Shen F. T., Rekha P. D., Ho M. J.. 2007; Williamsia serinedens sp. nov., isolated from an oil-contaminated soil. Int J Syst Evol Microbiol57:558–561 [CrossRef][PubMed]
    [Google Scholar]
  32. Zhi X. Y., Li W.-J., Stackebrandt E.. 2009; An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol59:589–608 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001398
Loading
/content/journal/ijsem/10.1099/ijsem.0.001398
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error