1887

Abstract

A non-motile, rod-shaped and pale-pink bacterium, designated strain WS71, was isolated from freshwater collected from the Woopo Wetland (Republic of Korea). Cells were Gram-stain-negative, aerobic, catalase-positive and oxidase-negative. The major fatty acids were summed feature 3 (comprising C16 : 1ω6c and/or C16 : 1ω7c), iso-C17 : 0 3-OH, C16 : 0 and iso-C15 : 0. The strain contained menaquinone 7 (MK-7) and the DNA G+C content was 39.4±0.4 mol%. The major polar lipids were phosphatidylethanolamine and an unknown aminophospholipid. A phylogenetic tree based on 16S rRNA gene sequences showed that WS71 forms an evolutionary lineage within the radiation enclosing the members of genus Mucilaginibacterwith Mucilaginibacter. soyangensis HME6664 as its nearest neighbor (98.3 % sequence similarity). DNA–DNA relatedness between WS71 and M. soyangensis HME6664 was 61.3±1.0 %. A number of phenotypic characteristics distinguished WS71 from the other members of the genus Mucilaginibacter . On the basis of the evidence presented in this study, WS71 represents a novel species, for which the name Mucilaginibacter puniceus sp. nov. is proposed. The type strain is WS71 (=KCTC 32270=JCM 19495).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001389
2016-11-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4549.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001389&mimeType=html&fmt=ahah

References

  1. An D. S., Yin C. R., Lee S. T., Cho C. H..( 2009;). Mucilaginibacter daejeonensis sp. nov., isolated from dried rice straw. . Int J Syst Evol Microbiol59:1122–1125. [CrossRef][PubMed]
    [Google Scholar]
  2. Baik K. S., Park S. C., Kim E. M., Lim C. H., Seong C. N..( 2010;). Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. . Int J Syst Evol Microbiol60:134–139. [CrossRef][PubMed]
    [Google Scholar]
  3. Bernardet J. F., Nakagawa Y., Holmes B..Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol52:1049–1070. [CrossRef][PubMed]
    [Google Scholar]
  4. Chen X. Y., Zhao R., Tian Y., Kong B. H., Li X. D., Chen Z. L., Li Y. H..( 2014;). Mucilaginibacter polytrichastri sp. nov., isolated from a moss (Polytrichastrum formosum), and emended description of the genus Mucilaginibacter. . Int J Syst Evol Microbiol64:1395–1400. [CrossRef][PubMed]
    [Google Scholar]
  5. Chun J., Goodfellow M..( 1995;). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. . Int J Syst Bacteriol45:240–245. [CrossRef][PubMed]
    [Google Scholar]
  6. CLSI.( 2009;). Performance Standards for Antimicrobial Susceptibility Testing. 19th Informational Supplement. CLSI Document (ISBN 1-56238-690-5), M100–S19. Wayne, PA:: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  7. Collins M. D..( 1994;). Isoprenoid quinones. . In Chemical Methods in Prokaryotic Systematics, pp. 265–309. Edited by Goodfellow M., O’Donnell A. G.. Chichester:: Johb Wiley & Sons Ltd;.
    [Google Scholar]
  8. Cui C. H., Choi T. E., Yu H., Jin F., Lee S. T., Kim S. C., Im W. T..( 2011;). Mucilaginibacter composti sp. nov., with ginsenoside converting activity, isolated from compost. . J Microbiol49:393–398. [CrossRef][PubMed]
    [Google Scholar]
  9. Embley T. M., Wait R..( 1994;). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M., O’Donell A. G.. Chichester:: Wiley;.
    [Google Scholar]
  10. Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution39:783–791. [CrossRef]
    [Google Scholar]
  11. Felsenstein J..( 1993;). PHYLIP (phylogeny inference package), version 3.5c., Distributed by the author. Department of Genome Sciences , University of Washington, Seattle, USA.
  12. Fitch W. M..( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool20:406–416. [CrossRef]
    [Google Scholar]
  13. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H. N..( 1974;). Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. . Int J Syst Bacteriol24:54–63. [CrossRef]
    [Google Scholar]
  14. Hall T. A..( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucl Acids Symp Ser41:95–98.
    [Google Scholar]
  15. Hwang Y. M., Baik K. S., Seong C. N..( 2014;). Mucilaginibacter defluvii sp. nov., isolated from a dye wastewater treatment facility. . Int J Syst Evol Microbiol64:565–571. [CrossRef][PubMed]
    [Google Scholar]
  16. Jiang F., Dai J., Wang Y., Xue X., Xu M., Guo Y., Li W., Fang C., Peng F..( 2012;). Mucilaginibacter soli sp. nov., isolated from Arctic tundra soil. . Int J Syst Evol Microbiol62:1630–1635. [CrossRef][PubMed]
    [Google Scholar]
  17. Joung Y., Kim H., Kang H., Lee B., Ahn T. S., Joh K..( 2014;). Mucilaginibacter soyangensis sp. nov., isolated from a lake. . Int J Syst Evol Microbiol64:413–419. [CrossRef][PubMed]
    [Google Scholar]
  18. Jukes T. H., Cantor C. R..( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism,vol. 3 , pp. 21–132. Edited by Munro H. N.. New York:: Academic Press;.[CrossRef]
    [Google Scholar]
  19. Khan H., Chung E. J., Kang D. Y., Jeon C. O., Chung Y. R..( 2013;). Mucilaginibacter jinjuensis sp. nov., with xylan-degrading activity. . Int J Syst Evol Microbiol63:1267–1272. [CrossRef][PubMed]
    [Google Scholar]
  20. Kim B. C., Lee K. H., Kim M. N., Lee J., Shin K. S..( 2010;). Mucilaginibacter dorajii sp. nov., isolated from the rhizosphere of Platycodon grandiflorum. . FEMS Microbiol Lett309:130–135. [CrossRef][PubMed]
    [Google Scholar]
  21. Kim J. H., Kang S. J., Jung Y. T., Oh T. K., Yoon J. H..( 2012a;). Mucilaginibacter lutimaris sp. nov., isolated from a tidal flat sediment. . Int J Syst Evol Microbiol62:515–519. [CrossRef][PubMed]
    [Google Scholar]
  22. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012b;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol62:716–721. [CrossRef][PubMed]
    [Google Scholar]
  23. Kovacs N..( 1956;). Identification of Pseudomonas pyocyanea by the oxidase reaction. . Nature178:703. [CrossRef][PubMed]
    [Google Scholar]
  24. Lányí B..( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol19:1–67.[CrossRef]
    [Google Scholar]
  25. Lee J. S., Lee K. C., Pyun Y. R., Bae K. S..( 2003;). Arthrobacter koreensis sp. nov., a novel alkalitolerant bacterium from soil. . Int J Syst Evol Microbiol53:1277–1280. [CrossRef][PubMed]
    [Google Scholar]
  26. Luo X., Zhang L., Dai J., Liu M., Zhang K., An H., Fang C..( 2009;). Mucilaginibacter ximonensis sp. nov., isolated from Tibetan soil. . Int J Syst Evol Microbiol59:1447–1450. [CrossRef][PubMed]
    [Google Scholar]
  27. Madhaiyan M., Poonguzhali S., Lee J. S., Senthilkumar M., Lee K. C., Sundaram S..( 2010;). Mucilaginibacter gossypii sp. nov. and Mucilaginibacter gossypiicola sp. nov., plant-growth-promoting bacteria isolated from cotton rhizosphere soils. . Int J Syst Evol Microbiol60:2451–2457. [CrossRef][PubMed]
    [Google Scholar]
  28. Männistö M. K., Tiirola M., McConnell J., Häggblom M. M..( 2010;). Mucilaginibacter frigoritolerans sp. nov., Mucilaginibacter lappiensis sp. nov. and Mucilaginibacter mallensis sp. nov., isolated from soil and lichen samples. . Int J Syst Evol Microbiol60:2849–2856. [CrossRef][PubMed]
    [Google Scholar]
  29. Marmur J., Doty P..( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol5:109–118. [CrossRef][PubMed]
    [Google Scholar]
  30. Minnikin D. E., Patel P. V, Alshamaony L., Goodfellow M..( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol27:104–117. [CrossRef]
    [Google Scholar]
  31. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H..( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods2:233–241. [CrossRef]
    [Google Scholar]
  32. Pankratov T. A., Tindall B. J., Liesack W., Dedysh S. N..( 2007;). Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. . Int J Syst Evol Microbiol57:2349–2354. [CrossRef][PubMed]
    [Google Scholar]
  33. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol4:406–425.[PubMed]
    [Google Scholar]
  34. Smibert R. M., Krieg N. R..( 1994;). General characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gebhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  35. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J..( 1998;). Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. . Int J Syst Bacteriol48:165–177. [CrossRef][PubMed]
    [Google Scholar]
  36. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S..( 2013;). mega6: Molecular Evolutionary Genetics Analysis version 6.0. . Mol Biol Evol30:2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  37. Thompson J. D., Higgins D. G., Gibson T. J..( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res22:4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  38. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R..( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R.. Washington, DC:: American Society for Microbiology Press;.
    [Google Scholar]
  39. Urai M., Aizawa T., Nakagawa Y., Nakajima M., Sunairi M..( 2008;). Mucilaginibacter kameinonensis sp. nov., isolated from garden soil. . Int J Syst Evol Microbiol58:2046–2050.[CrossRef]
    [Google Scholar]
  40. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I, Moore L. H., Moore W. E. C., Murray R. G. E. et al.( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol37:463–464.[CrossRef]
    [Google Scholar]
  41. Yoon J. H., Kang S. J., Park S., Oh T. K..( 2012;). Mucilaginibacter litoreus sp. nov., isolated from marine sand. . Int J Syst Evol Microbiol62:2822–2827. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001389
Loading
/content/journal/ijsem/10.1099/ijsem.0.001389
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error