1887

Abstract

A Gram-stain-negative, yellow-pigmented, ovoid to rod-shaped, strictly aerobic bacterial strain, designated 100921-2, was isolated from air at the foot of Xiangshan Mountain. Phylogenetic and phenotypic analysis of the organism revealed that the isolate belongs to the genus . Strain 100921-2 showed high 16S rRNA gene sequence similarity (96.01–94.70 %) to other type strains of the genus , with the highest similarity to MSW-14. Growth of strain 100921-2 was observed at 4–50 °C (optimum, 30 °C), at pH 4.5–10.0 (optimum, pH 7.0) and at salinities of 0–10 % (w/v) NaCl (optimum 0–0.5 %). The major fatty acids were C 7 (27.8 %), C 6 (23.1 %), 11-methyl C 7(11.9 %), summed feature 3 (9.1 %) and C 2-OH (7.9 %). The predominant respiratory quinone was ubiquinone-10 (Q-10). Polar lipid analysis indicated the presence of diphosphatidylglycerol, sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, two unknown phospholipids, five unknown polar lipids and two unknown glycolipids. The DNA G+C content of the type strain was 67.5 mol%. On the basis of the data from the polyphasic characterization, strain 100921-2 represents a novel species, for which the name sp. nov. is proposed. The type strain is 100921-2 (=CFCC 14287=KCTC 42844).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001388
2016-11-01
2020-04-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4543.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001388&mimeType=html&fmt=ahah

References

  1. Biebl H., Allgaier M., Tindall B. J., Koblizek M., Lünsdorf H., Pukall R., Wagner-Döbler I.. 2005; Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol55:1089–1096 [CrossRef][PubMed]
    [Google Scholar]
  2. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W.. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol57:2259–2261 [CrossRef][PubMed]
    [Google Scholar]
  3. Doetsch R. N.. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology , pp.21–33 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. H.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Dong X. Z., Cai M. Y.. 2001; Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation);
    [Google Scholar]
  5. Fan Z. Y., Xiao Y. P., Hui W., Tian G. R., Lee J. S., Lee K. C., Quan Z. X.. 2011; Altererythrobacter dongtanensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol61:2035–2039 [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  7. Jeong S. H., Jin H. M., Lee H. J., Jeon C. O.. 2013; Altererythrobacter gangjinensis sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol63:971–976 [CrossRef][PubMed]
    [Google Scholar]
  8. Jung Y. T., Park S., Lee J. S., Yoon J. H.. 2014; Altererythrobacter aestiaquae sp. nov., isolated from seawater. Int J Syst Evol Microbiol64:3943–3949 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–737 [CrossRef][PubMed]
    [Google Scholar]
  10. Kumar N. R., Nair S., Langer S., Busse H.-J., Kämpfer P.. 2008; Altererythrobacter indicus sp. nov., isolated from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol58:839–844 [CrossRef][PubMed]
    [Google Scholar]
  11. Kwon K. K., Woo J. H., Yang S. H., Kang J. H., Kang S. G., Kim S. J., Sato T., Kato C.. 2007; Altererythrobacter epoxidivorans gen. nov., sp. nov., an epoxide hydrolase-active, mesophilic marine bacterium isolated from cold-seep sediment, and reclassification of Erythrobacter luteolus Yoon et al. 2005 as Altererythrobacter luteolus comb. nov. Int J Syst Evol Microbiol57:2207–2211 [CrossRef][PubMed]
    [Google Scholar]
  12. Lai Q., Yuan J., Shao Z.. 2009; Altererythrobacter marinus sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol59:2973–2976 [CrossRef][PubMed]
    [Google Scholar]
  13. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques In Bacterial Systematics , pp.115–175 Edited by Stackebrandt E., Goodfellow M.. New York: Wiley;
    [Google Scholar]
  14. Lee K. B., Liu C. T., Anzai Y., Kim H., Aono T., Oyaizu H.. 2005; The hierarchical system of the ‘Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol55:1907–1919 [CrossRef][PubMed]
    [Google Scholar]
  15. Lei X., Li Y., Chen Z., Zheng W., Lai Q., Zhang H., Guan C., Cai G., Yang X. et al. 2014; Altererythrobacter xiamenensis sp. nov., an algicidal bacterium isolated from red tide seawater. Int J Syst Evol Microbiol64:631–637 [CrossRef][PubMed]
    [Google Scholar]
  16. Li Y., He W., Wang T., Piao C. G., Guo L. M., Chang J. P., Guo M. W., Xie S. J.. 2014; Acinetobacter qingfengensis sp. nov., isolated from canker bark of Populus x euramericana. Int J Syst Evol Microbiol64:1043–1050 [CrossRef][PubMed]
    [Google Scholar]
  17. Matsumoto M., Iwama D., Arakaki A., Tanaka A., Tanaka T., Miyashita H., Matsunaga T.. 2011; Altererythrobacter ishigakiensis sp. nov., an astaxanthin-producing bacterium isolated from a marine sediment. Int J Syst Evol Microbiol61:2956–2961 [CrossRef][PubMed]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  19. Minnikin D. E., O’donnell A., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  20. Nedashkovskaya O. I., Cho S. H., Joung Y., Joh K., Kim M. N., Shin K. S., Oh H. W., Bae K. S., Mikhailov V. V., Kim S. B.. 2013; Altererythrobacter troitsensis sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol63:93–97 [CrossRef][PubMed]
    [Google Scholar]
  21. Park S. C., Baik K. S., Choe H. N., Lim C. H., Kim H. J., Ka J. O., Seong C. N.. 2011; Altererythrobacter namhicola sp. nov. and Altererythrobacter aestuarii sp. nov., isolated from seawater. Int J Syst Evol Microbiol61:709–715 [CrossRef][PubMed]
    [Google Scholar]
  22. Raj P. S., Ramaprasad E. V., Vaseef S., Sasikala Ch., Ramana C.. 2013; Rhodobacter viridis sp. nov., a phototrophic bacterium isolated from mud of a stream. Int J Syst Evol Microbiol63:181–186 [CrossRef][PubMed]
    [Google Scholar]
  23. Rzhetsky A., Nei M.. 1993; Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol10:1073–1095[PubMed]
    [Google Scholar]
  24. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  25. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  26. Seo S. H., Lee S. D.. 2010; Altererythrobacter marensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol60:307–311 [CrossRef][PubMed]
    [Google Scholar]
  27. Shieh W. Y., Chen Y. W., Chaw S. M., Chiu H. H.. 2003; Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. Int J Syst Evol Microbiol53:479–484 [CrossRef][PubMed]
    [Google Scholar]
  28. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:846–849 [CrossRef]
    [Google Scholar]
  29. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  30. Tindall B. J.. 1989; Fully saturated menaqionones in the archaebacterium Pyrobaculum islandicum. FEMS Microbiol Lett60:251–254 [CrossRef]
    [Google Scholar]
  31. Wu Y. H., Xu L., Meng F. X., Zhang D. S., Wang C. S., Oren A., Xu X. W.. 2014; Altererythrobacter atlanticus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol64:116–121 [CrossRef][PubMed]
    [Google Scholar]
  32. Xue X., Zhang K., Cai F., Dai J., Wang Y., Rahman E., Peng F., Fang C.. 2012; Altererythrobacter xinjiangensis sp. nov., isolated from desert sand, and emended description of the genus Altererythrobacter. Int J Syst Evol Microbiol62:28–32 [CrossRef][PubMed]
    [Google Scholar]
  33. Yang Y., Zhang G., Sun Z., Cheung M. K., Huang C.. 2014; Altererythrobacter oceanensis sp. nov., isolated from the Western Pacific. Antonie Van Leeuwenhoek106:1191–1198 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001388
Loading
/content/journal/ijsem/10.1099/ijsem.0.001388
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error