sp. nov. and sp. nov., isolated from marine environments Free

Abstract

Strain Ery9, isolated from surface seawater of the Atlantic Ocean, and strain Ery22, isolated from deep-sea sediment of the Indian Ocean, were subjected to a taxonomic study using a polyphasic approach. Cells of the two strains were Gram-stain-negative, aerobic and rod-shaped. They produced yellow pigments and lacked bacteriochlorophyll . On the basis of 16S rRNA gene sequence analysis, strain Ery9 was closely related to PQ-2 (with 16S rRNA gene sequence similarity of 97.7 %), and strain Ery22 was closely related to E4A9 (98.3 %). The 16S rRNA gene sequence similarity between strain Ery9 and strain Ery22 was 96.6 %. Phylogenetic analyses revealed that strains Ery9 and Ery22 fell within the cluster of the genus and represented two independent lineages. The average nucleotide identity (ANI) values and the genome-to-genome distances between strains Ery9 and Ery22 and the type strains of species of the genus with validly published names were 73.7–78.4 % and 20.1–22.3 %, respectively. The major respiratory quinone of the two isolates was ubiquinone-10 (Q-10). The DNA G+C contents of strains Ery9 and Ery22 were 62.8 and 62.5 mol%, respectively. Differential phylogenetic distinctiveness and chemotaxonomic differences, together with phenotypic properties, revealed that strains Ery9 and Ery22 could be differentiated from their closely related species. Therefore, it is concluded that strains Ery9 and Ery22 represent two novel species of the genus , for which the names sp. nov. (type strain Ery9=CGMCC 1.15358=DSM 101479) and sp. nov. (type strain Ery22=CGMCC 1.15360=DSM 101481), are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001381
2016-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4506.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001381&mimeType=html&fmt=ahah

References

  1. Dong X.-Z., Cai M.-Y. 2001 Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation);
    [Google Scholar]
  2. Farmer J. J. III, Janda J. M., Brenner F. W., Cameron D. N., Birkhead K. M. 2005; Genus I. Vibrio Pacini 1854, 411AL. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 2 pp 494–546 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  3. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  4. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  5. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M. 2007; DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91 [View Article][PubMed]
    [Google Scholar]
  6. Hildebrand D. C., Palleroni N. J., Hendson M., Toth J., Johnson J. L. 1994; Pseudomonas flavescens sp. nov., isolated from walnut blight cankers. Int J Syst Bacteriol 44:410–415 [View Article][PubMed]
    [Google Scholar]
  7. Huang Y., Zeng Y., Feng H., Wu Y., Xu X. 2015; Croceicoccus naphthovorans sp. nov., a polycyclic aromatic hydrocarbons-degrading and acylhomoserine-lactone-producing bacterium isolated from marine biofilm, and emended description of the genus Croceicoccus. Int J Syst Evol Microbiol 65:1531–1536 [View Article][PubMed]
    [Google Scholar]
  8. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  9. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  10. Lagesen K., Hallin P., Rødland E. A., Staerfeldt H. H., Rognes T., Ussery D. W. 2007; RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  11. Lee I., Kim Y. O., Park S.-C., Chun J. 2016; OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103 [CrossRef]
    [Google Scholar]
  12. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  13. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar A., Buchner A., Lai T., Steppi S. et al. 2004; ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  14. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M. 2013; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60 [View Article][PubMed]
    [Google Scholar]
  15. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. 2007; SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196 [View Article][PubMed]
    [Google Scholar]
  16. Richter M., Rosselló-Móra R. 2009; Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  17. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  18. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  19. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  20. Tindall B. J., Sikorski J., Smibert R. M., Kreig N. R. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd edn. pp. 330–393Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R. Washington, DC: ASM Press;
    [Google Scholar]
  21. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International committee on systematic bacteriology. report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  22. Wu Y. H., Xu L., Meng F. X., Zhang D. S., Wang C. S., Oren A., Xu X. W. 2014; Altererythrobacter atlanticus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 64:116–121 [View Article][PubMed]
    [Google Scholar]
  23. Wu Y. H., Xu L., Zhou P., Wang C. S., Oren A., Xu X. W. 2015; Brevirhabdus pacifica gen. nov., sp. nov., isolated from deep-sea sediment in a hydrothermal vent field. Int J Syst Evol Microbiol 65:3645–3651 [View Article][PubMed]
    [Google Scholar]
  24. Xu X. W., Wu Y. H., Zhou Z., Wang C. S., Zhou Y. G., Zhang H. B., Wang Y., Wu M. 2007; Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57:1619–1624 [View Article][PubMed]
    [Google Scholar]
  25. Xu X. W., Wu Y. H., Wang C. S., Wang X. G., Oren A., Wu M. 2009; Croceicoccus marinus gen. nov., sp. nov., a yellow-pigmented bacterium from deep-sea sediment, and emended description of the family Erythrobacteraceae. Int J Syst Evol Microbiol 59:2247–2253 [View Article][PubMed]
    [Google Scholar]
  26. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R. 2008; The all-species living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250 [View Article][PubMed]
    [Google Scholar]
  27. Yuan J., Lai Q., Sun F., Zheng T., Shao Z. 2015; The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge. Front Microbiol 6:853 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001381
Loading
/content/journal/ijsem/10.1099/ijsem.0.001381
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed