1887

Abstract

Strain Ery9, isolated from surface seawater of the Atlantic Ocean, and strain Ery22, isolated from deep-sea sediment of the Indian Ocean, were subjected to a taxonomic study using a polyphasic approach. Cells of the two strains were Gram-stain-negative, aerobic and rod-shaped. They produced yellow pigments and lacked bacteriochlorophyll a. On the basis of 16S rRNA gene sequence analysis, strain Ery9 was closely related to Croceicoccus naphthovorans PQ-2 (with 16S rRNA gene sequence similarity of 97.7 %), and strain Ery22 was closely related to Croceicoccus marinus E4A9 (98.3 %). The 16S rRNA gene sequence similarity between strain Ery9 and strain Ery22 was 96.6 %. Phylogenetic analyses revealed that strains Ery9 and Ery22 fell within the cluster of the genus Croceicoccus and represented two independent lineages. The average nucleotide identity (ANI) values and the genome-to-genome distances between strains Ery9 and Ery22 and the type strains of species of the genus C roceicoccus with validly published names were 73.7–78.4 % and 20.1–22.3 %, respectively. The major respiratory quinone of the two isolates was ubiquinone-10 (Q-10). The DNA G+C contents of strains Ery9 and Ery22 were 62.8 and 62.5 mol%, respectively. Differential phylogenetic distinctiveness and chemotaxonomic differences, together with phenotypic properties, revealed that strains Ery9 and Ery22 could be differentiated from their closely related species. Therefore, it is concluded that strains Ery9 and Ery22 represent two novel species of the genus Croceicoccus , for which the names Croceicoccus pelagius sp. nov. (type strain Ery9=CGMCC 1.15358=DSM 101479) and Croceicoccus mobilis sp. nov. (type strain Ery22=CGMCC 1.15360=DSM 101481), are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001381
2016-11-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4506.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001381&mimeType=html&fmt=ahah

References

  1. Dong X.-Z., Cai M.-Y..( 2001;). Determinative Manual for Routine Bacteriology. Beijing:: Scientific Press (English translation);.
    [Google Scholar]
  2. Farmer J. J. III, Janda J. M., Brenner F. W., Cameron D. N., Birkhead K. M..( 2005;). Genus I. Vibrio Pacini 1854, 411AL. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 2 pp. 494–546. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York:: Springer;.
    [Google Scholar]
  3. Felsenstein J..( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol17:368–376. [CrossRef][PubMed]
    [Google Scholar]
  4. Fitch W. M..( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool20:406–416. [CrossRef]
    [Google Scholar]
  5. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M..( 2007;). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol57:81–91. [CrossRef][PubMed]
    [Google Scholar]
  6. Hildebrand D. C., Palleroni N. J., Hendson M., Toth J., Johnson J. L..( 1994;). Pseudomonas flavescens sp. nov., isolated from walnut blight cankers. . Int J Syst Bacteriol44:410–415. [CrossRef][PubMed]
    [Google Scholar]
  7. Huang Y., Zeng Y., Feng H., Wu Y., Xu X..( 2015;). Croceicoccus naphthovorans sp. nov., a polycyclic aromatic hydrocarbons-degrading and acylhomoserine-lactone-producing bacterium isolated from marine biofilm, and emended description of the genus Croceicoccus. . Int J Syst Evol Microbiol65:1531–1536. [CrossRef][PubMed]
    [Google Scholar]
  8. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol62:716–721. [CrossRef][PubMed]
    [Google Scholar]
  9. Kimura M..( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol16:111–120. [CrossRef][PubMed]
    [Google Scholar]
  10. Lagesen K., Hallin P., Rødland E. A., Staerfeldt H. H., Rognes T., Ussery D. W..( 2007;). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. . Nucleic Acids Res35:3100–3108. [CrossRef][PubMed]
    [Google Scholar]
  11. Lee I., Kim Y. O., Park S.-C., Chun J..( 2016;). OrthoANI: an improved algorithm and software for calculating average nucleotide identity. . Int J Syst Evol Microbiol66:1100–1103.[CrossRef]
    [Google Scholar]
  12. Leifson E..( 1963;). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol85:1183–1184.
    [Google Scholar]
  13. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar A., Buchner A., Lai T., Steppi S. et al.( 2004;). ARB: a software environment for sequence data. . Nucleic Acids Res32:1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  14. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M..( 2013;). Genome sequence-based species delimitation with confidence intervals and improved distance functions. . BMC Bioinformatics14:60. [CrossRef][PubMed]
    [Google Scholar]
  15. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O..( 2007;). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. . Nucleic Acids Res35:7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  16. Richter M., Rosselló-Móra R..( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A106:19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  17. Saitou N., Nei M..( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol4:406–425.[PubMed]
    [Google Scholar]
  18. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol28:2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  19. Thompson J. D., Higgins D. G., Gibson T. J..( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res22:4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  20. Tindall B. J., Sikorski J., Smibert R. M., Kreig N. R..( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R.. Washington, DC:: ASM Press;.
    [Google Scholar]
  21. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al.( 1987;). International committee on systematic bacteriology. report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol37:463–464.[CrossRef]
    [Google Scholar]
  22. Wu Y. H., Xu L., Meng F. X., Zhang D. S., Wang C. S., Oren A., Xu X. W..( 2014;). Altererythrobacter atlanticus sp. nov., isolated from deep-sea sediment. . Int J Syst Evol Microbiol64:116–121. [CrossRef][PubMed]
    [Google Scholar]
  23. Wu Y. H., Xu L., Zhou P., Wang C. S., Oren A., Xu X. W..( 2015;). Brevirhabdus pacifica gen. nov., sp. nov., isolated from deep-sea sediment in a hydrothermal vent field. . Int J Syst Evol Microbiol65:3645–3651. [CrossRef][PubMed]
    [Google Scholar]
  24. Xu X. W., Wu Y. H., Zhou Z., Wang C. S., Zhou Y. G., Zhang H. B., Wang Y., Wu M..( 2007;). Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. . Int J Syst Evol Microbiol57:1619–1624. [CrossRef][PubMed]
    [Google Scholar]
  25. Xu X. W., Wu Y. H., Wang C. S., Wang X. G., Oren A., Wu M..( 2009;). Croceicoccus marinus gen. nov., sp. nov., a yellow-pigmented bacterium from deep-sea sediment, and emended description of the family Erythrobacteraceae. . Int J Syst Evol Microbiol59:2247–2253. [CrossRef][PubMed]
    [Google Scholar]
  26. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R..( 2008;). The all-species living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol31:241–250. [CrossRef][PubMed]
    [Google Scholar]
  27. Yuan J., Lai Q., Sun F., Zheng T., Shao Z..( 2015;). The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge. . Front Microbiol6:853. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001381
Loading
/content/journal/ijsem/10.1099/ijsem.0.001381
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error