1887

Abstract

Three actinobacterial strains were isolated from roots of the salt-marsh plant collected in Ria de Aveiro, Portugal. Molecular typing using enterobacterial repetitive intergenic consensus ERIC-PCR fingerprinting showed the strains to be highly similar. Phylogenetic analyses based on the 16S rRNA gene sequence and multilocus sequence analysis (MLSA) using B, B, A and and 16S rRNA genes sequences showed that the strains represented a member of the genus , with DSM 18910 as the closest phylogenetic relative. DNA–DNA hybridization between strain RZ63 and its closest relative was below 70 %, supporting the hypothesis that it represented a distinct genomic species. Chemotaxonomic analyses of the novel strains and their DNA G+C contents confirmed their affiliation to the genus , however, the peptidoglycan of RZ63 contained diaminobutyric acid as the diagnostic diamino acid. In addition, physiological and fatty acid analyses revealed differences between these strains and their phylogenetic relatives, reinforcing their status as a distinct species. Based on the physiological, genetic and chemotaxonomic characterisation it is proposed that the strains studied represent a novel species of the genus for which the name sp. nov. is proposed (type strain RZ63=DSM 27101=CECT 8355).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001379
2016-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4492.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001379&mimeType=html&fmt=ahah

References

  1. Alves A., Phillips A. J., Henriques I., Correia A. 2007; Rapid differentiation of species of Botryosphaeriaceae by PCR fingerprinting. Res Microbiol 158:112–121 [View Article][PubMed]
    [Google Scholar]
  2. Alves A., Correia A., Igual J. M., Trujillo M. E. 2014; Microbacterium endophyticum sp. nov. and Microbacterium halimionae sp. nov., endophytes isolated from the salt-marsh plant Halimione portulacoides and emended description of the genus Microbacterium. Syst Appl Microbiol 37:474–479 [View Article][PubMed]
    [Google Scholar]
  3. Alves A., Riesco R., Correia A., Trujillo M. E. 2015; Microbacterium proteolyticum sp. nov. isolated from roots of Halimione portulacoides. Int J Syst Evol Microbiol 65:1794–1798 [View Article][PubMed]
    [Google Scholar]
  4. Anjum N. A., Ahmad I., Válega M., Pacheco M., Figueira E., Duarte A. C., Pereira E. 2011; Impact of seasonal fluctuations on the sediment-mercury, its accumulation and partitioning in Halimione portulacoides and Juncus maritimus collected from Ria de Aveiro coastal lagoon (Portugal). Water Air Soil Pollut 222:1–15 [View Article]
    [Google Scholar]
  5. Bates R. G., Bower V. E. 1956; Alkaline solutions for pH control. Anal Chem 28:1322–1324 [View Article]
    [Google Scholar]
  6. Behrendt U., Ulrich A., Schumann P. 2001; Description of Microbacterium foliorum sp. nov. and Microbacterium phyllosphaerae sp. nov., isolated from the phyllosphere of grasses and the surface litter after mulching the sward, and reclassification of Aureobacterium resistens (Funke et al. 1998) as Microbacterium resistens comb. nov. Int J Syst Evol Microbiol 51:1267–1276 [View Article][PubMed]
    [Google Scholar]
  7. Berg G., Grube M., Schloter M., Smalla K. 2014; Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148 [View Article][PubMed]
    [Google Scholar]
  8. Chun J. 2001; PHYDIT. Molecular Sequence Editor for Phylogeny. Version 3.1. http://plaza.snu.ac.kr/~jchun/phydit/
    [Google Scholar]
  9. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J. 2002; Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52:1551–1558 [View Article][PubMed]
    [Google Scholar]
  10. Evtushenko L. I., Takeuchi M. 2006; The family Microbacteriaceae. In The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd edn. vol. 3 pp 1020–1098 Edited by Dworkin M., Falkow S., Roenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  11. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  12. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  13. Fidalgo C., Henriques I., Rocha J., Tacão M., Alves A. 2016; Culturable endophytic bacteria from the salt marsh plant Halimione portulacoides: phylogenetic diversity, functional characterization and influence of metal(loid) contamination. Environ Sci Pollut Res 23:10200–10214 [View Article]
    [Google Scholar]
  14. Gagne-Bourgue F., Aliferis K. A., Seguin P., Rani M., Samson R., Jabaji S. 2013; Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. J Appl Microbiol 114:836–853 [View Article]
    [Google Scholar]
  15. Gevers D., Huys G., Swings J. 2001; Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205:31–36 [View Article][PubMed]
    [Google Scholar]
  16. Goris J., Suzuki K., Vos P. D., Nakase T., Kersters K. 1998; Evaluation of a microplate DNA – DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153 [View Article]
    [Google Scholar]
  17. Hillis D. M., Bull J. J. 1993; An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192 [View Article]
    [Google Scholar]
  18. Kageyama A., Takahashi Y., Matsuo Y., Adachi K., Kasai H., Shizuri Y., Omura S. 2007; Microbacterium flavum sp. nov. and Microbacterium lacus sp. nov., isolated from marine environments. Actinomycetologica 21:53–58 [CrossRef]
    [Google Scholar]
  19. Karojet S., Kunz S., van Dongen J. T. 2012; Microbacterium yannicii sp. nov., isolated from Arabidopsis thaliana roots. Int J Syst Evol Microbiol 62:822–826 [View Article][PubMed]
    [Google Scholar]
  20. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  21. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics , pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  22. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. 2007; clustal w and clustal x version 2.0. Bioinformatics 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  23. Madhaiyan M., Poonguzhali S., Lee J. S., Lee K. C., Saravanan V. S., Santhanakrishnan P. 2010; Microbacterium azadirachtae sp. nov., a plant-growth-promoting actinobacterium isolated from the rhizoplane of neem seedlings. Int J Syst Evol Microbiol 60:1687–1692 [View Article][PubMed]
    [Google Scholar]
  24. McIlvaine T. C. 1921; A buffer solution for colorimetric comparison. J Biol Chem 49:183–186
    [Google Scholar]
  25. McInroy J. A., Kloepper J. W. 1995; Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant and Soil 173:337–342 [View Article]
    [Google Scholar]
  26. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  27. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  28. Richert K., Brambilla E., Stackebrandt E. 2007; The phylogenetic significance of peptidoglycan types: Molecular analysis of the genera Microbacterium and Aureobacterium based upon sequence comparison of gyrB, rpoB, recA and ppk and 16S rRNA genes. Syst Appl Microbiol 30:102–108 [View Article][PubMed]
    [Google Scholar]
  29. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  30. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:1–6
    [Google Scholar]
  31. Schumann P. 2011; Peptidoglycan structure. Methods Microbiol 38:101–129 [CrossRef]
    [Google Scholar]
  32. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231[PubMed]
    [Google Scholar]
  33. Sturz A. V., Kimpinski J. 2004; Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant and Soil 262:241–249 [View Article]
    [Google Scholar]
  34. Suzuki K.-I., Hamada M. 2012; Genus I. Microbacterium. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 5 pp 814–852 Edited by Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Suzuki K.-I., Ludwig W., Whitman W. B. New York, NY: Springer; [CrossRef]
    [Google Scholar]
  35. Takeuchi M., Hatano K. 1998; Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. Int J Syst Bacteriol 48:739–747 [View Article][PubMed]
    [Google Scholar]
  36. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  37. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [View Article]
    [Google Scholar]
  38. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  39. Trujillo M. E., Kroppenstedt R. M., Schumann P., Carro L., Martínez-Molina E. 2006; Micromonospora coriariae sp. nov., isolated from root nodules of Coriaria myrtifolia. Int J Syst Evol Microbiol 56:2381–2385 [View Article][PubMed]
    [Google Scholar]
  40. Válega M., Lillebø A. I., Pereira M. E., Caçador I., Duarte A. C., Pardal M. A. 2008; Mercury in salt marshes ecosystems: Halimione portulacoides as biomonitor. Chemosphere 73:1224–1229 [View Article][PubMed]
    [Google Scholar]
  41. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International committee on systematic bacteriology report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  42. Zakhia F., Jeder H., Willems A., Gillis M., Dreyfus B., de Lajudie P. 2006; Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microb Ecol 51:375–393 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001379
Loading
/content/journal/ijsem/10.1099/ijsem.0.001379
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error