1887

Abstract

Strains LPU83 and Or191 of the genus Rhizobium were isolated from the root nodules of alfalfa, grown in acid soils from Argentina and the USA. These two strains, which shared the same plasmid pattern, lipopolysaccharide profile, insertion-sequence fingerprint, 16S rRNA gene sequence and PCR-fingerprinting pattern, were different from reference strains representing species of the genus Rhizobium with validly published names. On the basis of previously reported data and from new DNA-DNA hybridization results, phenotypic characterization and phylogenetic analyses, strains LPU83 and Or191 can be considered to be representatives of a novel species of the genus Rhizobium , for which the name Rhizobium favelukesii sp. nov. is proposed. The type strain of this species is LPU83 (=CECT 9014=LMG 29160), for which an improved draft-genome sequence is available.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001373
2016-11-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4451.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001373&mimeType=html&fmt=ahah

References

  1. Althabegoiti M. J., López-García S. L., Piccinetti C., Mongiardini E. J., Pérez-Giménez J., Quelas J. I., Perticari A., Lodeiro A. R..( 2008;). Strain selection for improvement of Bradyrhizobium japonicum competitiveness for nodulation of soybean. . FEMS Microbiol Lett282:115–123. [CrossRef][PubMed]
    [Google Scholar]
  2. Beringer J. E..( 1974;). R factor transfer in Rhizobium leguminosarum. . J Gen Microbiol84:188–198. [CrossRef][PubMed]
    [Google Scholar]
  3. Bromfield E. S., Tambong J. T., Cloutier S., Prévost D., Laguerre G., Van Berkum P., Tran Thi T. V., Assabgui R., Barran L. R..( 2010;). Ensifer, Phyllobacterium and Rhizobium species occupy nodules of Medicago sativa (alfalfa) and Melilotus alba (sweet clover) grown at a Canadian site without a history of cultivation. . Microbiology156:505–520. [CrossRef][PubMed]
    [Google Scholar]
  4. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J..( 2002;). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. . Int J Syst Evol Microbiol52:1551–1558. [CrossRef][PubMed]
    [Google Scholar]
  5. Darriba D., Taboada G. L., Doallo R., Posada D..( 2012;). jModelTest 2: more models, new heuristics and parallel computing. . Nat Methods9:772. [CrossRef][PubMed]
    [Google Scholar]
  6. Del Papa M. F., Balague L. J., Sowinski S. C., Wegener C., Segundo E., Abarca F. M., Toro N., Niehaus K., Pühler A. et al.( 1999;). Isolation and characterization of alfalfa-nodulating rhizobia present in acidic soils of central argentina and uruguay. . Appl Environ Microbiol65:1420–1427.[PubMed]
    [Google Scholar]
  7. Del Papa M. F., Pistorio M., Balague L. J., Draghi W. O., Wegener C., Perticari A., Niehaus K., Lagares A..( 2003;). A microcosm study on the influence of pH and the host-plant on the soil persistence of two alfalfa-nodulating rhizobia with different saprophytic and symbiotic characteristics. . Biol Fert Soils39:112–116. [CrossRef]
    [Google Scholar]
  8. Eardly B. D., Hannaway D. B., Bottomley P. J..( 1985;). Characterization of rhizobia from ineffective rlfalfa nodules: ability to nodulate bean plants [Phaseolus vulgaris (L.) Savi.]. . Appl Environ Microbiol50:1422–1427.[PubMed]
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E..( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Evol Microbiol39:224–229.
    [Google Scholar]
  10. Glenn A. R., Dilworth M. J..( 1994;). The life of root nodule bacteria in the acidic underground. . FEMS Microbiol Lett123:1–9. [CrossRef]
    [Google Scholar]
  11. Goris J., Suzuki K.-i., Vos P. D., Nakase T., Kersters K..( 1998;). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. . Can J Microbiol44:1148–1153.[CrossRef]
    [Google Scholar]
  12. Guindon S., Gascuel O..( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol52: 696–704. [CrossRef][PubMed]
    [Google Scholar]
  13. Gyaneshwar P., Hirsch A. M., Moulin L., Chen W. M., Elliott G. N., Bontemps C., Estrada-de Los Santos P., Gross E., Dos Reis F. B. et al.( 2011;). Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. . Mol Plant Microbe Interact24:1276–1288. [CrossRef][PubMed]
    [Google Scholar]
  14. Howieson J. G., Robson A. D., Abbott L. K..( 1992;). Acid-tolerant species of Medicago produce root exudates at low pH which induce the expression of nodulation genes in Rhizobium meliloti. . Aust J Bot19:287–296. [CrossRef]
    [Google Scholar]
  15. López-López A., Rogel M. A., Ormeño-Orrillo E., Martínez-Romero J., Martínez-Romero E..( 2010;). Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. . Syst Appl Microbiol33:322–327. [CrossRef][PubMed]
    [Google Scholar]
  16. López-López A., Rogel-Hernández M. A., Barois I., Ortiz Ceballos A. I., Martínez J., Ormeño-Orrillo E., Martínez-Romero E..( 2012;). Rhizobium grahamii sp. nov., from nodules of Dalea leporina, Leucaena leucocephala and Clitoria ternatea, and Rhizobium mesoamericanum sp. nov., from nodules of Phaseolus vulgaris, siratro, cowpea and Mimosa pudica. . Int J Syst Evol Microbiol62:2264–2271. [CrossRef][PubMed]
    [Google Scholar]
  17. Martínez-Romero E., Segovia L., Mercante F. M., Franco A. A., Graham P., Pardo M. A..( 1991;). Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. . Int J Syst Bacteriol41:417–426. [CrossRef][PubMed]
    [Google Scholar]
  18. Michaud R., Lehman W. F., Rumbaugh M. D..( 1988;). World Distribution and Historical Development. Madison, Wis:: USA American Society of Agronomy;.
    [Google Scholar]
  19. Mousavi S. A., Österman J., Wahlberg N., Nesme X., Lavire C., Vial L., Paulin L., De Lajudie P., Lindström K..( 2014;). Phylogeny of the RhizobiumAllorhizobiumAgrobacterium clade supports the delineation of Neorhizobium gen. nov. . Syst Appl Microbiol37:208–215.[CrossRef]
    [Google Scholar]
  20. Mousavi S. A., Willems A., Nesme X., De Lajudie P., Lindström K..( 2015;). Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. . Syst Appl Microbiol38:84–90. [CrossRef][PubMed]
    [Google Scholar]
  21. Noel K. D., Sanchez A., Fernandez L., Leemans J., Cevallos M. A..( 1984;). Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. . J Bacteriol158:148–155.[PubMed]
    [Google Scholar]
  22. Ormeño-Orrillo E., Servín-Garcidueñas L. E., Rogel M. A., González V., Peralta H., Mora J., Martínez-Romero J., Martínez-Romero E..( 2015;). Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. . Syst Appl Microbiol38:287–291.[CrossRef]
    [Google Scholar]
  23. Peix A., Ramírez-Bahena M. H., Velázquez E., Bedmar E. J..( 2014;). Bacterial associations with legumes. . Crit Rev in Plant Sci34:17–42.[CrossRef]
    [Google Scholar]
  24. Reeve W., Ardley J., Tian R., Eshragi L., Yoon J. W., Ngamwisetkun P., Seshadri R., Ivanova N. N., Kyrpides N. C..( 2015;). A genomic encyclopedia of the root nodule bacteria: assessing genetic diversity through a systematic biogeographic survey. . Stand Genomic Sci10:14. [CrossRef][PubMed]
    [Google Scholar]
  25. Reeve W. G., Tiwari R. P., Dilworth M. J., Glenn A. R..( 1993;). Calcium affects the growth and survival of Rhizobium meliloti. . Soc Sci Med25:581–586. [CrossRef]
    [Google Scholar]
  26. Sadowsky M. J., Tully R. E., Cregan P. B., Keyser H. H..( 1987;). Genetic diversity in Bradyrhizobium japonicum serogroup 123 and its relation to genotype-specific nodulation of soybean. . Appl Environ Microbiol53:2624–2630.[PubMed]
    [Google Scholar]
  27. Stajković-Srbinović O., De Meyer S. E., Miličić B., Delić D., Willems A..( 2012;). Genetic diversity of rhizobia associated with alfalfa in Serbian soils. . Biol Fert Soils48:531–545. [CrossRef]
    [Google Scholar]
  28. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol28:2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  29. Tighe S. W., De Lajudie P., Dipietro K., Lindstrom K., Nick G., Jarvis B. D..( 2000;). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the sherlock microbial identification system. . Int J Syst Evol Microbiol50:787–801. [CrossRef][PubMed]
    [Google Scholar]
  30. Vincent J. M..( 1970;). A Manual for the Practical Study of the Root-Nodule Bacteria.:IBP Handbook No. 15. Oxford:: Blackwell Scientific;.
    [Google Scholar]
  31. Wegener C., Schröder S., Kapp D., Pühler A., Lopez E. S., Martínez-Abarca F., Toro N., Del Papa M. F., Balague L. J. et al.( 2001;). Genetic uniformity and symbiotic properties of acid-tolerant alfalfa-nodulating rhizobia isolated from dispersed locations throughout Argentina. . Symbiosis30:141–162.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001373
Loading
/content/journal/ijsem/10.1099/ijsem.0.001373
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error