1887

Abstract

Strain BL24, isolated from bamboo phyllosphere collected in Coimbatore, India, was studied for taxonomic classification. Cells of the strain were aerobic, Gram-stain-positive, motile, catalase- and oxidase-positive rods and grew on media containing methanol. In 16S rRNA gene sequence analysis, strain BL24showed the highest sequence similarities with KACC 11473 (97.8 %) and SY01 (95.1 %). DNA–DNA hybridization with KACC 11473, phylogenetically the most closely related species, was 21.6 %; this value showed that strain BL24belonged to a different species. The cell-wall peptidoglycan was found to possess -diaminopimelic acid and the G+C content of genomic DNA was 52.1 mol %. It contained menaquinone (MK)-7 as the predominant respiratory quinone and the major cellular fatty acids are C, anteiso-C, iso-C, and anteiso-C. Based on the molecular and chemotaxonomic markers and physiological properties, strain BL24 (=NRRL B-51698=CCM 7577) is considered to represent a novel species of the genus , for which the name is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001356
2016-11-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4362.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001356&mimeType=html&fmt=ahah

References

  1. Amore A., Parameswaran B., Kumar R., Birolo L., Vinciguerra R., Marcolongo L., Ionata E., La Cara F., Pandey A., Faraco V. 2015; Application of a new xylanase activity from Bacillus amyloliquefaciens XR44A in brewer's spent grain saccharification. J Chem Technol Biot 90:573–581 [View Article]
    [Google Scholar]
  2. Arfman N., Dijkhuizen L., Kirchhof G., Ludwig W., Schleifer K. H., Bulygina E. S., Chumakov K. M., Govorukhina N. I., Trotsenko Y. A., White D. 1992; Bacillus methanolicus sp. nov., a new species of thermotolerant, methanol-utilizing, endospore-forming bacteria. Int J Syst Bacteriol 42:439–445 [View Article][PubMed]
    [Google Scholar]
  3. Ash C., Priest F. G., Collins M. D. 1994; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie Van Leeuwenhoek 64:253–260 [View Article]
    [Google Scholar]
  4. Bailey M. J., Biely P., Poutanen K. 1992; Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270 [View Article]
    [Google Scholar]
  5. Bozzola J. J., Russell L. D. 1998 Electron Microscopy, 2nd edn. Sudbury, MS: Jones & Bartlett;
    [Google Scholar]
  6. Brown A. E., Smith H. 2014; Benson’s microbiological applications, Laboratory manual in General Microbiology. Short Version, Spiral-Bound pp. 480 McGraw-Hill Education;
    [Google Scholar]
  7. De Vos P., Ludwig W., Schleifer K. H., Whitman W. B. 2009; Family IV Paenibacillaceae fam nov. In The Firmicutes, Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 3 pp. 269 Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B. New York: Springer;
    [Google Scholar]
  8. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [View Article][PubMed]
    [Google Scholar]
  9. El-Shishtawy R. M., Mohamed S. A., Asiri A. M., Gomaa A. B., Ibrahim I. H., Al-Talhi H. A. 2014; Solid fermentation of wheat bran for hydrolytic enzymes production and saccharification content by a local isolate Bacillus megatherium. BMC Biotechnol 14:29–36 [View Article][PubMed]
    [Google Scholar]
  10. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  11. Felsenstein J. 1985; Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  12. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Sys Zool 20:406–416 [View Article]
    [Google Scholar]
  13. Harder W., Atwood M. M., Quayle J. R. 1973; Methanol assimilation by Hyphomicrobium sp. J Gen Microbiol 78:155–163 [View Article]
    [Google Scholar]
  14. Kim J. F., Jeong H., Park S. Y., Kim S. B., Park Y. K., Choi S. K., Ryu C. M., Hur C. G., Ghim S. Y. et al. 2010; Genome sequence of the polymyxin-producing plant-probiotic rhizobacterium Paenibacillus polymyxa E681. J Bacteriol 192:6103–6104 [View Article][PubMed]
    [Google Scholar]
  15. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  16. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  17. Kroppenstedt R. M. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP 18) and a silver loaded ion exchanger as stationery phases. J Liq Chromatogr 5:2359–2367 [View Article]
    [Google Scholar]
  18. Madhaiyan M., Kim B. Y., Poonguzhali S., Kwon S. W., Song M. H., Ryu J. H., Go S. J., Koo B. S., Sa T. M. 2007; Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int J Syst Evol Microbiol 57:326–331 [View Article][PubMed]
    [Google Scholar]
  19. Madhaiyan M., Poonguzhali S., Kwon S. W., Sa T. M. 2010; Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. Int J Syst Evol Microbiol 60:2490–2495 [View Article][PubMed]
    [Google Scholar]
  20. Madhaiyan M., Poonguzhali S. 2014; Methylobacterium pseudosasicola sp. nov. and Methylobacterium phyllostachyos sp. nov., isolated from bamboo leaf surfaces. Int J Syst Evol Microbiol 64:2376–2384 [View Article][PubMed]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B., Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Evol Microbiol 39:159–167 [View Article]
    [Google Scholar]
  22. Moon J. C., Jung Y. J., Jung J. H., Jung H. S., Cheong Y. R., Jeon C. O., Lee K. O., Lee S. Y. 2011; Paenibacillus sacheonensis sp. nov., a xylanolytic and cellulolytic bacterium isolated from tidal flat sediment. Int J Syst Evol Microbiol 61:2753–2757 [View Article][PubMed]
    [Google Scholar]
  23. Nelson D. M., Glawe A. J., Labeda D. P., Cann I. K., Mackie R. I. 2009; Paenibacillus tundrae sp. nov. and Paenibacillus xylanexedens sp. nov., psychrotolerant, xylan-degrading bacteria from Alaskan tundra. Int J Syst Evol Microbiol 59:1708–1714 [View Article][PubMed]
    [Google Scholar]
  24. Parte A. C. 2014; LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42:D613–D616 [View Article][PubMed]
    [Google Scholar]
  25. Poonguzhali S., Madhaiyan M., Sa T. 2006; Cultivation-dependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris ssp pekinensis and screening of traits for potential plant growth promotion. Plant and Soil 286:167–180 [View Article]
    [Google Scholar]
  26. Rivas R., Mateos P. F., Martínez-Molina E., Velázquez E. 2005; Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol 55:743–746 [View Article][PubMed]
    [Google Scholar]
  27. Rybakova D., Cernava T., Köberl M., Liebminger S., Etemadi M., Berg G. 2016; Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus. Plant Soil 405:125–140 [View Article]
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  29. Sasser M. 1990; Identification of bacteria through fatty acid analysis. In Methods in Phytobacteriology pp. 199–204 Edited by Klement S., Rudolf K., Sands D. C. Akademiai Kiado, Budapest;
    [Google Scholar]
  30. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156 [CrossRef]
    [Google Scholar]
  31. Seldin L., Dubnau D. 1985; Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int J Syst Evol Microbiol 35:151–154 [View Article]
    [Google Scholar]
  32. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2739 [View Article][PubMed]
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  34. Whittenbury R., Phillips K. C., Wilkinson J. F. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218 [View Article][PubMed]
    [Google Scholar]
  35. Wilson K. 1997; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp. 2.4.1–2.4.2 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001356
Loading
/content/journal/ijsem/10.1099/ijsem.0.001356
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error