1887

Abstract

Five strains of a Gram-stain-positive, catalase-negative, -haemolytic, coccus-shaped chain-forming organism were isolated separately from the lower respiratory tracts of five animals of in the endemic area of plague, the Qinghai-Tibet Plateau, China. Based on their morphological characteristics, biochemical features and molecular phylogenetic studies, the strains were placed as representing a new member of the genus . Comparative 16S rRNA gene sequence studies indicated that strain HTS5 shared 96.5, 96.2 and 96.0 % similarity with treptococcus CCUG 42692, ATCC 15912 and ATCC 43765, respectively. Sequence analysis of its and genes showed that strain HTS5 was most closely related to CCUG 65085 with 9.2 and 10.9 % interspecies divergence, respectively. The whole genome phylogenetic tree based on 339 core genes of 65 genomes confirmed that HTS5 belongs to a distinct lineage that is well separated from recognized species of the genus . DNA–DNA hybridization using 65 available genomes from GenBank showed that HTS5 displayed less than 70 % DNA–DNA relatedness with the other 65 species of the genus deposited in the GenBank database. The genome of strain HTS5 (2 322 791 bp) contained 2377 genes and had a G+C content of 41.6 mol%. Therefore, the five strains are considered to represent a novel species of the genus for which the name sp. nov. is proposed. The type strain is HTS5 (=DSM 101995=CGMCC 1.15534).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001350
2016-11-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4315.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001350&mimeType=html&fmt=ahah

References

  1. Auch A. F., von Jan M., Klenk H. P., Göker M.. 2010; Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  2. Austrian R.. 1960; The Gram stain and the etiology of lobar pneumonia, an historical note. Bacteriol Rev24:261–265[PubMed]
    [Google Scholar]
  3. Berlin K., Koren S., Chin C. S., Drake J. P., Landolin J. M., Phillippy A. M.. 2015; Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol33:623–630 [CrossRef][PubMed]
    [Google Scholar]
  4. Braden G. C., Arbona R. R., Lepherd M., Monette S., Toma A., Fox J. G., Dewhirst F. E., Lipman N. S.. 2015; A novel alpha-hemolytic Streptococcus species (Streptococcus azizii sp. nov.) associated with meningoencephalitis in naive weanling C57BL/6 Mice. Comp Med65:186–195[PubMed]
    [Google Scholar]
  5. Colston S. M., Fullmer M. S., Beka L., Lamy B., Gogarten J. P., Graf J.. 2014; Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using Aeromonas as a test case. MBio5:e02136 [CrossRef][PubMed]
    [Google Scholar]
  6. Drancourt M., Roux V., Fournier P. E., Raoult D.. 2004; rpoB gene sequence-based identification of aerobic Gram-positive cocci of the genera Streptococcus, Enterococcus, Gemella, Abiotrophia, and Granulicatella. J Clin Microbiol42:497–504 [CrossRef][PubMed]
    [Google Scholar]
  7. Facklam R., Elliott J. A.. 1995; Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin Microbiol Rev8:479–495[PubMed]
    [Google Scholar]
  8. Garrido-Sanz D., Meier-Kolthoff J. P., Göker M., Martín M., Rivilla R., Redondo-Nieto M.. 2016; Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex. PLoS One11:e0150183 [CrossRef][PubMed]
    [Google Scholar]
  9. Guimaraes A. M., Santos A. P., SanMiguel P., Walter T., Timenetsky J., Messick J. B.. 2011; Complete genome sequence of Mycoplasma suis and insights into its biology and adaption to an erythrocyte niche. PLoS One6:e19574 [CrossRef][PubMed]
    [Google Scholar]
  10. Hu S., Jin D., Lu S., Liu S., Zhang J., Wang Y., Bai X., Xiong Y., Huang Y. et al. 2015; Helicobacter himalayensis sp. nov. isolated from gastric mucosa of Marmota himalayana. Int J Syst Evol Microbiol65:1719–1725 [CrossRef][PubMed]
    [Google Scholar]
  11. Kadri Z., Amar M., Ouadghiri M., Cnockaert M., Aerts M., El Farricha O., Vandamme P.. 2014; Streptococcus moroccensis sp. nov. and Streptococcus rifensis sp. nov., isolated from raw camel milk. Int J Syst Evol Microbiol64:2480–2485 [CrossRef][PubMed]
    [Google Scholar]
  12. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  13. Liu S., Jin D., Lan R., Wang Y., Meng Q., Dai H., Lu S., Hu S., Xu J.. 2015; Escherichia marmotae sp. nov., isolated from faeces of Marmota himalayana. Int J Syst Evol Microbiol65:2130–2134 [CrossRef][PubMed]
    [Google Scholar]
  14. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M.. 2013; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14:60 [CrossRef][PubMed]
    [Google Scholar]
  15. Okamoto M., Imai S., Miyanohara M., Saito W., Momoi Y., Nomura Y., Ikawa T., Ogawa T., Miyabe-Nishiwaki T. et al. 2015; Streptococcus panodentis sp. nov. from the oral cavities of chimpanzees. Microbiol Immunol59:526–532 [CrossRef][PubMed]
    [Google Scholar]
  16. Póntigo F., Moraga M., Flores S. V.. 2015; Molecular phylogeny and a taxonomic proposal for the genus Streptococcus. Genet Mol Res14:10905–10918 [CrossRef][PubMed]
    [Google Scholar]
  17. Poyart C., Quesne G., Coulon S., Berche P., Trieu-Cuot P.. 1998; Identification of streptococci to species level by sequencing the gene encoding the manganese-dependent superoxide dismutase. J Clin Microbiol36:41–47[PubMed]
    [Google Scholar]
  18. Rasmussen S. W.. 2002; SEQtools, a software package for analysis of nucleotide and protein sequences. http://www.seqtools.dk
  19. Saito M., Shinozaki-Kuwahara N., Hirasawa M., Takada K.. 2016; Streptococcus oricebi sp. nov., isolated from the oral cavity of tufted capuchin. Int J Syst Evol Microbiol66:1063–1067 [CrossRef][PubMed]
    [Google Scholar]
  20. Shinozaki-Kuwahara N., Saito M., Hirasawa M., Takada K.. 2014; Streptococcus oriloxodontae sp. nov., isolated from the oral cavities of elephants. Int J Syst Evol Microbiol64:3755–3759 [CrossRef][PubMed]
    [Google Scholar]
  21. Stone R.. 2010; China. Race to contain plague in quake zone. Nature328:559
    [Google Scholar]
  22. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  23. Vela A. I., Perez M., Zamora L., Palacios L., Domínguez L., Fernández-Garayzábal J. F.. 2010; Streptococcus porci sp. nov., isolated from swine sources. Int J Syst Evol Microbiol60:104–108 [CrossRef][PubMed]
    [Google Scholar]
  24. Vela A. I., Mentaberre G., Marco I., Velarde R., Lavín S., Domínguez L., Fernández-Garayzábal J. F.. 2011; Streptococcus rupicaprae sp. nov., isolated from a Pyrenean chamois (Rupicapra pyrenaica). Int J Syst Evol Microbiol61:1989–1993 [CrossRef][PubMed]
    [Google Scholar]
  25. Vela A. I., Casas-Díaz E., Lavín S., Domínguez L., Fernández-Garayzábal J. F.. 2015; Streptococcus pharyngis sp. nov., a novel streptococcal species isolated from the respiratory tract of wild rabbits. Int J Syst Evol Microbiol65:2903–2907 [CrossRef][PubMed]
    [Google Scholar]
  26. Vela A. I., Mentaberre G., Lavín S., Domínguez L., Fernández-Garayzábal J. F.. 2016; Streptococcus caprae sp. nov., isolated from Iberian ibex (Capra pyrenaica hispanica). Int J Syst Evol Microbiol66:196–200 [CrossRef][PubMed]
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I, Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464[CrossRef]
    [Google Scholar]
  28. Whiley R. A., Fraser H. Y., Douglas C. W., Hardie J. M., Williams A. M., Collins M. D.. 1990; Streptococcus parasanguis sp. nov., an atypical viridans Streptococcus from human clinical specimens. FEMS Microbiol Lett56:115–121[PubMed][CrossRef]
    [Google Scholar]
  29. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. 2008; The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  30. Yarza P., Yilmaz P., Pruesse E., Glöckner F. O., Ludwig W., Schleifer K. H., Whitman W. B., Euzéby J., Amann R., Rosselló-Móra R.. 2014; Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol12:635–645 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001350
Loading
/content/journal/ijsem/10.1099/ijsem.0.001350
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error