1887

Abstract

Five strains of a Gram-stain-positive, catalase-negative, -haemolytic, coccus-shaped chain-forming organism were isolated separately from the lower respiratory tracts of five animals of in the endemic area of plague, the Qinghai-Tibet Plateau, China. Based on their morphological characteristics, biochemical features and molecular phylogenetic studies, the strains were placed as representing a new member of the genus . Comparative 16S rRNA gene sequence studies indicated that strain HTS5 shared 96.5, 96.2 and 96.0 % similarity with treptococcus CCUG 42692, ATCC 15912 and ATCC 43765, respectively. Sequence analysis of its and genes showed that strain HTS5 was most closely related to CCUG 65085 with 9.2 and 10.9 % interspecies divergence, respectively. The whole genome phylogenetic tree based on 339 core genes of 65 genomes confirmed that HTS5 belongs to a distinct lineage that is well separated from recognized species of the genus . DNA–DNA hybridization using 65 available genomes from GenBank showed that HTS5 displayed less than 70 % DNA–DNA relatedness with the other 65 species of the genus deposited in the GenBank database. The genome of strain HTS5 (2 322 791 bp) contained 2377 genes and had a G+C content of 41.6 mol%. Therefore, the five strains are considered to represent a novel species of the genus for which the name sp. nov. is proposed. The type strain is HTS5 (=DSM 101995=CGMCC 1.15534).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001350
2016-11-01
2022-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4315.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001350&mimeType=html&fmt=ahah

References

  1. Auch A. F., von Jan M., Klenk H. P., Göker M. 2010; Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134 [View Article][PubMed]
    [Google Scholar]
  2. Austrian R. 1960; The Gram stain and the etiology of lobar pneumonia, an historical note. Bacteriol Rev 24:261–265[PubMed]
    [Google Scholar]
  3. Berlin K., Koren S., Chin C. S., Drake J. P., Landolin J. M., Phillippy A. M. 2015; Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 33:623–630 [View Article][PubMed]
    [Google Scholar]
  4. Braden G. C., Arbona R. R., Lepherd M., Monette S., Toma A., Fox J. G., Dewhirst F. E., Lipman N. S. 2015; A novel alpha-hemolytic Streptococcus species (Streptococcus azizii sp. nov.) associated with meningoencephalitis in naive weanling C57BL/6 Mice. Comp Med 65:186–195[PubMed]
    [Google Scholar]
  5. Colston S. M., Fullmer M. S., Beka L., Lamy B., Gogarten J. P., Graf J. 2014; Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using Aeromonas as a test case. MBio 5:e02136 [View Article][PubMed]
    [Google Scholar]
  6. Drancourt M., Roux V., Fournier P. E., Raoult D. 2004; rpoB gene sequence-based identification of aerobic Gram-positive cocci of the genera Streptococcus, Enterococcus, Gemella, Abiotrophia, and Granulicatella. J Clin Microbiol 42:497–504 [View Article][PubMed]
    [Google Scholar]
  7. Facklam R., Elliott J. A. 1995; Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin Microbiol Rev 8:479–495[PubMed]
    [Google Scholar]
  8. Garrido-Sanz D., Meier-Kolthoff J. P., Göker M., Martín M., Rivilla R., Redondo-Nieto M. 2016; Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex. PLoS One 11:e0150183 [View Article][PubMed]
    [Google Scholar]
  9. Guimaraes A. M., Santos A. P., SanMiguel P., Walter T., Timenetsky J., Messick J. B. 2011; Complete genome sequence of Mycoplasma suis and insights into its biology and adaption to an erythrocyte niche. PLoS One 6:e19574 [View Article][PubMed]
    [Google Scholar]
  10. Hu S., Jin D., Lu S., Liu S., Zhang J., Wang Y., Bai X., Xiong Y., Huang Y. et al. 2015; Helicobacter himalayensis sp. nov. isolated from gastric mucosa of Marmota himalayana. Int J Syst Evol Microbiol 65:1719–1725 [View Article][PubMed]
    [Google Scholar]
  11. Kadri Z., Amar M., Ouadghiri M., Cnockaert M., Aerts M., El Farricha O., Vandamme P. 2014; Streptococcus moroccensis sp. nov. and Streptococcus rifensis sp. nov., isolated from raw camel milk. Int J Syst Evol Microbiol 64:2480–2485 [View Article][PubMed]
    [Google Scholar]
  12. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  13. Liu S., Jin D., Lan R., Wang Y., Meng Q., Dai H., Lu S., Hu S., Xu J. 2015; Escherichia marmotae sp. nov., isolated from faeces of Marmota himalayana. Int J Syst Evol Microbiol 65:2130–2134 [View Article][PubMed]
    [Google Scholar]
  14. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M. 2013; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60 [View Article][PubMed]
    [Google Scholar]
  15. Okamoto M., Imai S., Miyanohara M., Saito W., Momoi Y., Nomura Y., Ikawa T., Ogawa T., Miyabe-Nishiwaki T. et al. 2015; Streptococcus panodentis sp. nov. from the oral cavities of chimpanzees. Microbiol Immunol 59:526–532 [View Article][PubMed]
    [Google Scholar]
  16. Póntigo F., Moraga M., Flores S. V. 2015; Molecular phylogeny and a taxonomic proposal for the genus Streptococcus. Genet Mol Res 14:10905–10918 [View Article][PubMed]
    [Google Scholar]
  17. Poyart C., Quesne G., Coulon S., Berche P., Trieu-Cuot P. 1998; Identification of streptococci to species level by sequencing the gene encoding the manganese-dependent superoxide dismutase. J Clin Microbiol 36:41–47[PubMed]
    [Google Scholar]
  18. Rasmussen S. W. 2002; SEQtools, a software package for analysis of nucleotide and protein sequences. http://www.seqtools.dk
  19. Saito M., Shinozaki-Kuwahara N., Hirasawa M., Takada K. 2016; Streptococcus oricebi sp. nov., isolated from the oral cavity of tufted capuchin. Int J Syst Evol Microbiol 66:1063–1067 [View Article][PubMed]
    [Google Scholar]
  20. Shinozaki-Kuwahara N., Saito M., Hirasawa M., Takada K. 2014; Streptococcus oriloxodontae sp. nov., isolated from the oral cavities of elephants. Int J Syst Evol Microbiol 64:3755–3759 [View Article][PubMed]
    [Google Scholar]
  21. Stone R. 2010; China. Race to contain plague in quake zone. Nature 328:559
    [Google Scholar]
  22. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  23. Vela A. I., Perez M., Zamora L., Palacios L., Domínguez L., Fernández-Garayzábal J. F. 2010; Streptococcus porci sp. nov., isolated from swine sources. Int J Syst Evol Microbiol 60:104–108 [View Article][PubMed]
    [Google Scholar]
  24. Vela A. I., Mentaberre G., Marco I., Velarde R., Lavín S., Domínguez L., Fernández-Garayzábal J. F. 2011; Streptococcus rupicaprae sp. nov., isolated from a Pyrenean chamois (Rupicapra pyrenaica). Int J Syst Evol Microbiol 61:1989–1993 [View Article][PubMed]
    [Google Scholar]
  25. Vela A. I., Casas-Díaz E., Lavín S., Domínguez L., Fernández-Garayzábal J. F. 2015; Streptococcus pharyngis sp. nov., a novel streptococcal species isolated from the respiratory tract of wild rabbits. Int J Syst Evol Microbiol 65:2903–2907 [View Article][PubMed]
    [Google Scholar]
  26. Vela A. I., Mentaberre G., Lavín S., Domínguez L., Fernández-Garayzábal J. F. 2016; Streptococcus caprae sp. nov., isolated from Iberian ibex (Capra pyrenaica hispanica). Int J Syst Evol Microbiol 66:196–200 [View Article][PubMed]
    [Google Scholar]
  27. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I, Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  28. Whiley R. A., Fraser H. Y., Douglas C. W., Hardie J. M., Williams A. M., Collins M. D. 1990; Streptococcus parasanguis sp. nov., an atypical viridans Streptococcus from human clinical specimens. FEMS Microbiol Lett 56:115–121[PubMed] [CrossRef]
    [Google Scholar]
  29. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R. 2008; The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250 [View Article][PubMed]
    [Google Scholar]
  30. Yarza P., Yilmaz P., Pruesse E., Glöckner F. O., Ludwig W., Schleifer K. H., Whitman W. B., Euzéby J., Amann R., Rosselló-Móra R. 2014; Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635–645 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001350
Loading
/content/journal/ijsem/10.1099/ijsem.0.001350
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error