1887

Abstract

A bacterial strain, designated as ZFJT-2, was isolated from the stem of Geum aleppicum Jacq. collected from Taibai Mountain in Shaanxi Province, north-west China. Cells of strain ZFJT-2 were Gram-stain-negative, strictly aerobic, rod-shaped and motile by means of a single polar flagellum. The major fatty acids were summed feature 8 (comprising C18 : 1 ω7c and/or C18 : 1 ω6c), C16 : 0, 11-methyl C18 : 1 ω7c and summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c), and the DNA G+C content was 58.3 mol% (HPLC). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain ZFJT-2 was a member of the genus Rhizobium and was most closely related to Rhizobium giardinii KACC 10720 (98.6 % similarity) and Rhizobium herbae CCBAU 83011 (98.5 %). The low levels of sequence similarity found between the atpD, recA and glnII gene sequences of strain ZFJT-2 and those of recognized species of the genus Rhizobium (no more than 94.4, 87.2 and 89.5 %, respectively) indicated that it may represent a separate species of the genus Rhizobium . The DNA–DNA relatedness values for strain ZFJT-2 with respect to R. giardinii KACC 10720 and R. herbae CCBAU 83011 were 17.6 and 41.9 %, respectively. On the basis of phenotypic, phylogenetic and genotypic data, strain ZFJT-2 is considered to represent a novel species of the genus Rhizobium , for which the name Rhizobium gei sp. nov. is proposed. The type strain is ZFJT-2 (=CCTCC AB 2013015=KCTC 32301=LMG 27603).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001348
2016-10-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/4282.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001348&mimeType=html&fmt=ahah

References

  1. Amarger N., Macheret V., Laguerre G..( 1997;). Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. . Int J Syst Bacteriol 47: 996–1006. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bibi F., Chung E. J., Khan A., Jeon C. O., Chung Y. R..( 2012;). Rhizobium halophytocola sp. nov., isolated from the root of a coastal dune plant. . Int J Syst Evol Microbiol 62: 1997–2003. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chen W. X., Li G. S., Qi Y. L., Wang E. T., Yuan H. L., LI J. L..( 1991;). Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. . Int J Syst Bacteriol 41: 275–280.[CrossRef]
    [Google Scholar]
  4. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J..( 2002;). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. . Int J Syst Evol Microbiol 52: 1551–1558. [CrossRef] [PubMed]
    [Google Scholar]
  5. Doetsch R. N..( 1981;). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 21–33 . Edited by Gerdhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E..( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39: 224–229. [CrossRef]
    [Google Scholar]
  7. Felsenstein J..( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  8. Felsenstein J..( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  9. Fitch W. M..( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20: 406–416. [CrossRef]
    [Google Scholar]
  10. Frank B..( 1889;). Über die pilzsymbiose der leguminosen. . Ber Deut Bot Ges 7: 332–346.
    [Google Scholar]
  11. Gao J. L., Sun J. G., Li Y., Wang E. T., Chen W. X..( 1994;). Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. . Int J Syst Bacteriol 44: 151–158. [CrossRef]
    [Google Scholar]
  12. Gaunt M. W., Turner S. L., Rigottier-Gois L., Lloyd-Macgilp S. A., Young J. P..( 2001;). Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. . Int J Syst Evol Microbiol 51: 2037–2048. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hunter W. J., Kuykendall L. D., Manter D. K..( 2007;). Rhizobium selenireducens sp. nov. a selenite-reducing α-Proteobacteria isolated from a bioreactor. . Curr Microbiol 55: 455–460. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kim B. C., Poo H., Lee K. H., Kim M. N., Kwon O. Y., Shin K. S..( 2012a;). Mucilaginibacter angelicae sp. nov., isolated from the rhizosphere of Angelica polymorpha Maxim. . Int J Syst Evol Microbiol 62: 55–60. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al.( 2012b;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kimura M..( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kittiwongwattana C., Thawai C..( 2013;). Rhizobium paknamense sp. nov., isolated from lesser duckweeds (Lemna aequinoctialis). . Int J Syst Evol Microbiol 63: 3823–3828. [CrossRef] [PubMed]
    [Google Scholar]
  18. Laguerre G., Nour S. M., Macheret V., Sanjuan J., Drouin P., Amarger N..( 2001;). Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. . Microbiology 147: 981–993. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lane D. J..( 1991;). 16S–23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 125–175 . Edited by Stackebrandt E., Goodfellow M.. Chichester:: Wiley;.
    [Google Scholar]
  20. Lee K. B., Liu C. T., Anzai Y., Kim H., Aono T., Oyaizu H..( 2005;). The hierarchical system of the ‘Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. . Int J Syst Evol Microbiol 55: 1907–1919. [CrossRef] [PubMed]
    [Google Scholar]
  21. López-López A., Rogel M. A., Ormeño-Orrillo E., Martínez-Romero J., Martínez-Romero E..( 2010;). Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. . Syst Appl Microbiol 33: 322–327. [CrossRef] [PubMed]
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B..( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high- performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167. [CrossRef]
    [Google Scholar]
  23. Parte A. C..( 2016;). List of prokaryotic names with standing in nomenclature. . http://www.bacterio.net/.
  24. Peng G., Yuan Q., Li H., Zhang W., Tan Z..( 2008;). Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. . Int J Syst Evol Microbiol 58: 2158–2163. [CrossRef] [PubMed]
    [Google Scholar]
  25. Quan Z. X., Bae H. S., Baek J. H., Chen W. F., Im W. T., Lee S. T..( 2005;). Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. . Int J Syst Evol Microbiol 55: 2543–2549. [CrossRef] [PubMed]
    [Google Scholar]
  26. Ren D. W., Wang E. T., Chen W. F., Sui X. H., Zhang X. X., Liu H. C., Chen W. X., Chen W. F..( 2011;). Rhizobium herbae sp. nov. and Rhizobium giardinii-related bacteria, minor microsymbionts of various wild legumes in China. . Int J Syst Evol Microbiol 61: 1912–1920. [CrossRef] [PubMed]
    [Google Scholar]
  27. Rosenblueth M., Martínez-Romero E..( 2004;). Rhizobium etli maize populations and their competitiveness for root colonization. . Arch Microbiol 181: 337–344. [CrossRef] [PubMed]
    [Google Scholar]
  28. Sasser M..( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  29. Schloter M., Wiehe W., Assmus B., Steindl H., Becke H., Höflich G., Hartmann A..( 1997;). Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antisera. . Appl Environ Microbiol 63: 2038–2046.[PubMed]
    [Google Scholar]
  30. Smibert R. M., Krieg N. R..( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology , pp. 607–654 . Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  31. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S..( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G..( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25: 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  33. Trujillo M. E., Willems A., Abril A., Planchuelo A. M., Rivas R., Ludeña D., Mateos P. F., Martínez-Molina E., Velázquez E..( 2005;). Nodulation of Lupinus albus by strains of ochrobactrum lupinelupini sp. nov. . Appl Environ Microbiol 71: 1318–1327. [CrossRef] [PubMed]
    [Google Scholar]
  34. Turner S. L., Young J. P..( 2000;). The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. . Mol Biol Evol 17: 309–319. [CrossRef] [PubMed]
    [Google Scholar]
  35. Vincent J. M..( 1970;). A Manual for the Practical Study of Root-Nodule Bacteria. Blackwell Scientific:: Oxford;.
    [Google Scholar]
  36. Wang F., Wang E. T., Wu L. J., Sui X. H., Li Y Jr, Chen W. X..( 2011;). Rhizobium vallis sp. nov., isolated from nodules of three leguminous species. . Int J Syst Evol Microbiol 61: 2582–2588. [CrossRef] [PubMed]
    [Google Scholar]
  37. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I, Moore L. H., Moore W. E. C., Murray R. G. E. et al.( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37: 463–464.[CrossRef]
    [Google Scholar]
  38. Wilson K..( 1987;). Preparation of genomic DNA from bacteria. . In Current Protocols in Molecular Biology , pp. 241–245. Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. New York:: Greene Publishing and Wiley Interscience;.
    [Google Scholar]
  39. Yoon J. H., Kang S. J., Yi H. S., Oh T. K., Ryu C. M..( 2010;). Rhizobium soli sp. nov., isolated from soil. . Int J Syst Evol Microbiol 60: 1387–1393. [CrossRef] [PubMed]
    [Google Scholar]
  40. Young J. M., Kuykendall L. D., Martínez-Romero E., Kerr A., Sawada H..( 2001;). A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. . Int J Syst Evol Microbiol 51: 89–103. [CrossRef] [PubMed]
    [Google Scholar]
  41. Zhang G. X., Ren S. Z., Xu M. Y., Zeng G. Q., Luo H. D., Chen J. L., Tan Z. Y., Sun G. P..( 2011;). Rhizobium borbori sp. nov., aniline-degrading bacteria isolated from activated sludge. . Int J Syst Evol Microbiol 61: 816–822. [CrossRef] [PubMed]
    [Google Scholar]
  42. Zhang L., Wang Y., Wei L., Wang Y., Shen X., Li S..( 2013;). Taibaiella smilacinae gen. nov., sp. nov., an endophytic member of the family Chitinophagaceae isolated from the stem of Smilacina japonica, and emended description of Flavihumibacter petaseus. . Int J Syst Evol Microbiol 63: 3769–3776. [CrossRef] [PubMed]
    [Google Scholar]
  43. Zhang L., Wei L., Zhu L., Li C., Wang Y., Shen X..( 2014;). Pseudoxanthomonas gei sp. nov., a novel endophytic bacterium isolated from the stem of Geum aleppicum. . Antonie Van Leeuwenhoek 105: 653–661. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001348
Loading
/content/journal/ijsem/10.1099/ijsem.0.001348
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error