1887

Abstract

A bacterial strain, designated STM-7, was isolated from a spring in Taiwan and characterized using a polyphasic taxonomy approach. Cells of strain STM-7 were Gram-staining-negative, aerobic, poly-β-hydroxybutyrate-accumulating, motile by a single polar flagellum, rod-shaped, surrounded by a thick capsule and formed milky-white colonies. Growth occurred at 15–37 °C (optimum, 25–30 °C), at pH 6–8 (optimum, pH 6–7) and with 0–2 % NaCl (optimum, 0–1 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain STM-7 belonged to the genus and was most closely related to S1 with a sequence similarity of 97.3 %. Strain STM-7 contained summed feature 3 (comprising C 7 and/or C 6) and C as the predominant fatty acids. The major hydroxyl fatty acids were C 3-OH and C 3-OH. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an uncharacterized aminophospholipid, an uncharacterized glycolipid and an uncharacterized phospholipid. The major isoprenoid quinone was Q-8. The DNA G+C content of the genomic DNA was 52.4 mol%. The DNA–DNA hybridization value for strain STM-7 with BCRC 17254 was less than 47 %. On the basis of the phylogenetic inference and phenotypic data, strain STM-7 should be classified as a representative of a novel species, for which the name sp. nov. is proposed. The type strain is STM-7 (=BCRC 80923=LMG 29289=KCTC 42982).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001345
2016-10-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/4262.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001345&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kudo Y., Oyaizu H.. 1997; The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol47:249–251 [CrossRef][PubMed]
    [Google Scholar]
  2. Bowman J. P.. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  3. Breznak J. A., Costilow R. N.. 2007; Physicochemical factors in growth. In Methods for General and Molecular Bacteriology, 3rd edn. , pp309–329 Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P.. 2001; Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol51:1729–1735 [CrossRef][PubMed]
    [Google Scholar]
  5. Chern L.-L., Stackebrandt E., Lee S.-F., Lee F.-L., Chen J.-K., Fu H.-M.. 2004; Chitinibacter tainanensis gen. nov., sp. nov., a chitin-degrading aerobe from soil in Taiwan. Int J Syst Evol Microbiol54:1387–1391 [CrossRef][PubMed]
    [Google Scholar]
  6. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T. et al. 2009; The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res37:D141–D145 [CrossRef][PubMed]
    [Google Scholar]
  7. Collins M. D.. 1994; Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics pp.265–309 Edited by Goodfellow M., O’Donnell A. G.. Chichester: Wiley;
    [Google Scholar]
  8. Embley T. M., Wait R.. 1994; Structural lipids of eubacteria. In Chemical Methods in Prokaryotic Systematics pp.121–161 Edited by Goodfellow M., O’Donnell A. G.. Chichester: Wiley;
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  10. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  11. Felsenstein J.. (1993); phylip (phylogeny inference package), version 3.5c. Distributed by the author Department of Genome Sciences, University of Washington, Seattle, USA.
  12. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  14. Kimura M.. 1983; The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;[CrossRef]
    [Google Scholar]
  15. Kluge A. G., Farris J. S.. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool18:1–32 [CrossRef]
    [Google Scholar]
  16. Kumar S., Stecher G., Tamura K.. 2016; mega 7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  18. Murray R. G. E., Doetsch R. N., Robinow C. F.. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology , pp.21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Nokhal T. H., Schlegel H. G.. 1983; Taxonomic Study of Paracoccus denitrificans. Int J Syst Bacteriol33:26–37 [CrossRef]
    [Google Scholar]
  20. Powers E. M.. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol61:3756–3758[PubMed]
    [Google Scholar]
  21. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  22. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. Newark, DE: MIDI Inc;http://www.microbialid.com/PDF/TechNote_101.pdf
  23. Schlegel H. G., Lafferty R., Krauss I.. 1970; The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch Mikrobiol70:283–294 [CrossRef]
    [Google Scholar]
  24. Spiekermann P., Rehm B. H., Kalscheuer R., Baumeister D., Steinbüchel A.. 1999; A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol171:73–80 [CrossRef][PubMed]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  26. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. 2007; Phenotypic characterization and the principles of comparative systematic. In Methods for General and Molecular Bacteriology, 3rd edn. pp.330–393 Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Tønjum T.. 2005; Order IV. Neisseriales ord. nov. In Bergey’s Mannual of Systematic Bacteriololgy, 2nd edn.vol. 2 Part C pp.774–863 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York: Springer;
    [Google Scholar]
  28. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464[CrossRef]
    [Google Scholar]
  29. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703[PubMed]
    [Google Scholar]
  30. Wen C. M., Tseng C. S., Cheng C. Y., Li Y. K.. 2002; Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem35:213–219 [CrossRef][PubMed]
    [Google Scholar]
  31. Yang C. S., Sheu S. Y., Young C. C., Arun A. B., Cheng C. Y., Chen W. M.. 2010; Chitinibacter alvei sp. nov., isolated from stream water. Int J Syst Evol Microbiol60:1760–1764 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001345
Loading
/content/journal/ijsem/10.1099/ijsem.0.001345
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error