1887

Abstract

Two Gramstaining-positive, catalase-negative, -hemolytic, coccus-shaped organisms were isolated separately from the respiratory tracts of two animals from the Qinghai-Tibet Plateau, PR China. Morphological, biological, biochemical, and molecular genetic studies were performed on these two isolates (HTS9 and HTS12). Their biochemical characteristics, such as acid production from different sugars and enzymatic activities, indicated that they represented a member of the genus . They are most closely related to CIP 105518 based on sequence analysis of their 16S rRNA, , and genes, with similarities of 97.6, 89.9, 92.6 and 91.1 % the four genes respectively. The whole genome phylogenetic tree reconstructed using 372 core genes from 65 genomes of members of the genus validates that HTS9 forms a distinct subline and exhibits specific phylogenetic affinity with DNA–DNA hybridization of HTS9 showed a DNA reassociation value of 32.1 %, closest to that of CIP 105518. Based on their phenotypic characteristics and in particular the phylogenetic findings (DNA–DNA hybridization, three phylogenetic trees built from the partial 16S rRNA/housekeeping genes, and from 372 core genes of 65 genomes of members of the genus ), we propose with confidence that strains HTS9 and HTS12 should be classified as representing a novel species of the genus , sp. nov. The type strain is HTS9 (=DSM 101996=CGMCC1.15532). Genome analysis of sp. nov. shows that its genome is 1 823 556 bp long with a DNA G+C content of 39.9 mol% and contains 2068 genes.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001337
2016-10-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/10/4211.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001337&mimeType=html&fmt=ahah

References

  1. Auch A. F., von Jan M., Klenk H. P., Göker M.. 2010; Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  2. Austrian R.. 1960; The Gram stain and the etiology of lobar pneumonia, an historical note. Bacteriol Rev24:261–265[PubMed]
    [Google Scholar]
  3. Colston S. M., Fullmer M. S., Beka L., Lamy B., Gogarten J. P., Graf J.. 2014; Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using Aeromonas as a test case. MBio5:e02136 [CrossRef][PubMed]
    [Google Scholar]
  4. Delgado S., Suárez A., Mayo B.. 2006; Identification of dominant bacteria in feces and colonic mucosa from healthy Spanish adults by culturing and by 16S rDNA sequence analysis. Dig Dis Sci51:744–751 [CrossRef][PubMed]
    [Google Scholar]
  5. Devriese L. A., Pot B., Vandamme P., Kersters K., Collins M. D., Alvarez N., Haesebrouck F., Hommez J.. 1997; Streptococcus hyovaginalis sp. nov. and Streptococcus thoraltensis sp. nov., from the genital tract of sows. Int J Syst Bacteriol47:1073–1077 [CrossRef][PubMed]
    [Google Scholar]
  6. Devriese L. A., Vandamme P., Collins M. D., Alvarez N., Pot B., Hommez J., Butaye P., Haesebrouck F.. 1999; Streptococcus pluranimalium sp. nov., from cattle and other animals. Int J Syst Bacteriol49:1221–1226 [CrossRef][PubMed]
    [Google Scholar]
  7. Drancourt M., Roux V., Fournier P. E., Raoult D.. 2004; rpoB gene sequence-based identification of aerobic Gram-positive cocci of the genera Streptococcus, Enterococcus, Gemella, Abiotrophia, and Granulicatella. J Clin Microbiol42:497–504 [CrossRef][PubMed]
    [Google Scholar]
  8. Facklam R., Elliott J. A.. 1995; Identification, classification, and clinical relevance of catalase-negative, Gram-positive cocci, excluding the Streptococci and Enterococci. Clin Microbiol Rev8:479–495[PubMed]
    [Google Scholar]
  9. Garrido-Sanz D., Meier-Kolthoff J. P., Göker M., Martín M., Rivilla R., Redondo-Nieto M.. 2016; Genomic and genetic diversity within the Pseudomonas fluorescens Complex. PLoS One11:e0150183 [CrossRef][PubMed]
    [Google Scholar]
  10. Glazunova O. O., Raoult D., Roux V.. 2009; Partial sequence comparison of the rpoB, sodA, groEL and gyrB genes within the genus Streptococcus. Int J Syst Evol Microbiol59:2317–2322 [CrossRef][PubMed]
    [Google Scholar]
  11. Goh S. H., Potter S., Wood J. O., Hemmingsen S. M., Reynolds R. P., Chow A. W.. 1996; HSP60 gene sequences as universal targets for microbial species identification: studies with coagulase-negative staphylococci. J Clin Microbiol34:818–823[PubMed]
    [Google Scholar]
  12. Goodfellow M., Stainsby F. M., Davenport R., Chun J., Curtis T.. 1998; Activated sludge foaming: the true extent of actinomycete diversity. Water Sci Technol37:511–519 [CrossRef]
    [Google Scholar]
  13. Guimaraes A. M., Santos A. P., SanMiguel P., Walter T., Timenetsky J., Messick J. B.. 2011; Complete genome sequence of Mycoplasma suis and insights into its biology and adaption to an erythrocyte niche. PLoS One6:e19574 [CrossRef][PubMed]
    [Google Scholar]
  14. Hu S., Jin D., Lu S., Liu S., Zhang J., Wang Y., Bai X., Xiong Y., Huang Y. et al. 2015; Helicobacter himalayensis sp. nov. isolated from gastric mucosa of Marmota himalayana. Int J Syst Evol Microbiol65:1719–1725 [CrossRef][PubMed]
    [Google Scholar]
  15. Huson D. H., Scornavacca C.. 2012; Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol61:1061–1067 [CrossRef][PubMed]
    [Google Scholar]
  16. Jin D., Chen C., Li L., Lu S., Li Z., Zhou Z., Jing H., Xu Y., Du P. et al. 2013; Dynamics of fecal microbial communities in children with diarrhea of unknown etiology and genomic analysis of associated Streptococcus lutetiensis. BMC Microbiol13:141 [CrossRef][PubMed]
    [Google Scholar]
  17. Katoh K., Standley D. M.. 2013; MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol30:772–780 [CrossRef][PubMed]
    [Google Scholar]
  18. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  19. Liu S., Jin D., Lan R., Wang Y., Meng Q., Dai H., Lu S., Hu S., Xu J.. 2015; Escherichia marmotae sp. nov., isolated from faeces of Marmota himalayana. Int J Syst Evol Microbiol65:2130–2134 [CrossRef][PubMed]
    [Google Scholar]
  20. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M.. 2013; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14:60 [CrossRef][PubMed]
    [Google Scholar]
  21. Póntigo F., Moraga M., Flores S. V.. 2015; Molecular phylogeny and a taxonomic proposal for the genus Streptococcus. Genet Mol Res14:10905–10918 [CrossRef][PubMed]
    [Google Scholar]
  22. Poyart C., Quesne G., Trieu-Cuot P.. 2002; Taxonomic dissection of the Streptococcus bovis group by analysis of manganese-dependent superoxide dismutase gene (sodA) sequences: reclassification of ‘Streptococcus infantarius subsp. coli’ as Streptococcus lutetiensis sp. nov. and of Streptococcus bovis biotype 11.2 as Streptococcus pasteurianus sp. nov. Int J Syst Evol Microbiol52:1247–1255 [CrossRef][PubMed]
    [Google Scholar]
  23. Price M. N., Dehal P. S., Arkin A. P.. 2009; FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol26:1641–1650 [CrossRef][PubMed]
    [Google Scholar]
  24. Rasmussen S. W.. 2002; SEQtools, a software package for analysis of nucleotide and protein sequences. http://www.seqtools.dk
  25. Saito M., Shinozaki-Kuwahara N., Hirasawa M., Takada K.. 2016; Streptococcus oricebi sp. nov., isolated from the oral cavity of tufted capuchin. Int J Syst Evol Microbiol66:1063–1067 [CrossRef][PubMed]
    [Google Scholar]
  26. Shinozaki-Kuwahara N., Saito M., Hirasawa M., Takada K.. 2014; Streptococcus oriloxodontae sp. nov., isolated from the oral cavities of elephants. Int J Syst Evol Microbiol64:3755–3759 [CrossRef][PubMed]
    [Google Scholar]
  27. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:846–849 [CrossRef]
    [Google Scholar]
  28. Stackebrandt E., Ebers J.. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today33:152–155
    [Google Scholar]
  29. Stone R.. 2010; China. race to contain plague in quake zone. Science328:559 [CrossRef][PubMed]
    [Google Scholar]
  30. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  31. Vela A. I., Fernández E., Lawson P. A., Latre M. V., Falsen E., Domínguez L., Collins M. D., Fernández-Garayzábal J. F.. 2002; Streptococcus entericus sp. nov., isolated from cattle intestine. Int J Syst Evol Microbiol52:665–669 [CrossRef][PubMed]
    [Google Scholar]
  32. Vela A. I., Casas-Díaz E., Lavín S., Domínguez L., Fernández-Garayzábal J. F.. 2015; Streptococcus pharyngis sp. nov., a novel streptococcal species isolated from the respiratory tract of wild rabbits. Int J Syst Evol Microbiol65:2903–2907 [CrossRef][PubMed]
    [Google Scholar]
  33. Vela A. I., Mentaberre G., Lavín S., Domínguez L., Fernández-Garayzábal J. F.. 2016; Streptococcus caprae sp. nov., isolated from Iberian ibex (Capra pyrenaica hispanica). Int J Syst Evol Microbiol66:196–200 [CrossRef][PubMed]
    [Google Scholar]
  34. Wayne L. G.. 1988; International committee on systematic bacteriology: announcement of the report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Zentralbl Bakteriol Mikrobiol Hyg A268:433–434[PubMed]
    [Google Scholar]
  35. Xu Y., Xu X., Lan R., Xiong Y., Ye C., Ren Z., Liu L., Zhao A., Wu L. F., Xu J.. 2013; An O island 172 encoded RNA helicase regulates the motility of Escherichia coli O157:H7. PLoS One8:e64211
    [Google Scholar]
  36. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. 2008; The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  37. Yarza P., Yilmaz P., Pruesse E., Glöckner F. O., Ludwig W., Schleifer K. H., Whitman W. B., Euzéby J., Amann R., Rosselló-Móra R.. 2014; Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol12:635–645 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001337
Loading
/content/journal/ijsem/10.1099/ijsem.0.001337
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error